Investigating the Interactions of Peptide Nucleic Acids with Multicomponent Peptide Hydrogels for the Advancement of Healthcare Technologies.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-05-17 DOI:10.3390/gels11050367
Sabrina Giordano, Monica Terracciano, Enrico Gallo, Carlo Diaferia, Andrea Patrizia Falanga, Antonella Accardo, Monica Franzese, Marco Salvatore, Gennaro Piccialli, Nicola Borbone, Giorgia Oliviero
{"title":"Investigating the Interactions of Peptide Nucleic Acids with Multicomponent Peptide Hydrogels for the Advancement of Healthcare Technologies.","authors":"Sabrina Giordano, Monica Terracciano, Enrico Gallo, Carlo Diaferia, Andrea Patrizia Falanga, Antonella Accardo, Monica Franzese, Marco Salvatore, Gennaro Piccialli, Nicola Borbone, Giorgia Oliviero","doi":"10.3390/gels11050367","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with lysine (K) or cysteine (C) enables electrostatic or covalent interactions with model PNAs engineered with glutamic acid or cysteine residues, respectively. Hydrogels were polymerized in situ in the presence of PNAs, and component ratios were systematically varied to optimize mechanical properties, loading efficiency, and release kinetics. The formulations obtained with a 1/10 ratio of Fmoc-FF(K or C)/Fmoc-FF provided an optimal balance between structural integrity and delivery performance. All hydrogel formulations demonstrated high stiffness (G' > 19,000 Pa), excellent water retention, and minimal swelling under physiological conditions (ΔW < 4%). The release studies over 10 days showed that electrostatic loading enabled faster and higher release (up to 90%), while covalent bonding resulted in slower, sustained delivery (~15%). These findings highlight the tunability of the hydrogel system for diverse therapeutic applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 5","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11050367","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with lysine (K) or cysteine (C) enables electrostatic or covalent interactions with model PNAs engineered with glutamic acid or cysteine residues, respectively. Hydrogels were polymerized in situ in the presence of PNAs, and component ratios were systematically varied to optimize mechanical properties, loading efficiency, and release kinetics. The formulations obtained with a 1/10 ratio of Fmoc-FF(K or C)/Fmoc-FF provided an optimal balance between structural integrity and delivery performance. All hydrogel formulations demonstrated high stiffness (G' > 19,000 Pa), excellent water retention, and minimal swelling under physiological conditions (ΔW < 4%). The release studies over 10 days showed that electrostatic loading enabled faster and higher release (up to 90%), while covalent bonding resulted in slower, sustained delivery (~15%). These findings highlight the tunability of the hydrogel system for diverse therapeutic applications.

研究多肽核酸与多组分多肽水凝胶的相互作用,促进医疗保健技术的发展。
本研究报道了肽基水凝胶在药物递送应用中的包封和控释肽核酸的发展。超短芳香肽,如Fmoc-FF,自组装成具有纳米结构的生物相容性水凝胶。与赖氨酸(K)或半胱氨酸(C)功能化的三肽(Fmoc-FFK和Fmoc-FFC)能够分别与谷氨酸或半胱氨酸残基工程化的模型PNAs进行静电或共价相互作用。水凝胶在PNAs的存在下原位聚合,并系统地改变组分比例以优化机械性能,加载效率和释放动力学。Fmoc-FF(K或C)/Fmoc-FF比例为1/10的配方在结构完整性和输送性能之间取得了最佳平衡。所有水凝胶配方都具有高硬度(G' > 19,000 Pa),良好的保水性和生理条件下最小的肿胀(ΔW < 4%)。超过10天的释放研究表明,静电加载能够更快、更高的释放(高达90%),而共价键导致更慢、持续的释放(~15%)。这些发现突出了水凝胶系统在各种治疗应用中的可调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信