Multi-Level Thresholding Based on Composite Local Contour Shannon Entropy Under Multiscale Multiplication Transform.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-05-21 DOI:10.3390/e27050544
Xianzhao Li, Yaobin Zou
{"title":"Multi-Level Thresholding Based on Composite Local Contour Shannon Entropy Under Multiscale Multiplication Transform.","authors":"Xianzhao Li, Yaobin Zou","doi":"10.3390/e27050544","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation is a crucial step in image processing and analysis, with multi-level thresholding being one of the important techniques for image segmentation. Existing approaches predominantly rely on metaheuristic optimization algorithms, which frequently encounter local optima stagnation and require extensive parameter tuning, thereby degrading segmentation accuracy and computational efficiency. This paper proposes a Shannon entropy-based multi-level thresholding method that utilizes composite contours. The method selects appropriate multiscale multiplication images by maximizing the Shannon entropy difference and constructs a new Shannon entropy objective function by dynamically combining contour images. Ultimately, it automatically determines multiple thresholds by integrating local contour Shannon entropy. Experimental results on synthetic images and real-world images with complex backgrounds, low contrast, blurred boundaries, and unbalanced sizes demonstrate that the proposed method outperforms six recently proposed multi-level thresholding methods based on the Matthew's correlation coefficient, indicating stronger adaptability and robustness for segmentation without requiring complex parameter tuning.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050544","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation is a crucial step in image processing and analysis, with multi-level thresholding being one of the important techniques for image segmentation. Existing approaches predominantly rely on metaheuristic optimization algorithms, which frequently encounter local optima stagnation and require extensive parameter tuning, thereby degrading segmentation accuracy and computational efficiency. This paper proposes a Shannon entropy-based multi-level thresholding method that utilizes composite contours. The method selects appropriate multiscale multiplication images by maximizing the Shannon entropy difference and constructs a new Shannon entropy objective function by dynamically combining contour images. Ultimately, it automatically determines multiple thresholds by integrating local contour Shannon entropy. Experimental results on synthetic images and real-world images with complex backgrounds, low contrast, blurred boundaries, and unbalanced sizes demonstrate that the proposed method outperforms six recently proposed multi-level thresholding methods based on the Matthew's correlation coefficient, indicating stronger adaptability and robustness for segmentation without requiring complex parameter tuning.

多尺度乘变换下基于复合局部轮廓香农熵的多级阈值分割。
图像分割是图像处理和分析的关键步骤,多层次阈值分割是图像分割的重要技术之一。现有方法主要依赖于元启发式优化算法,该算法经常遇到局部最优停滞并且需要大量的参数调整,从而降低了分割精度和计算效率。提出了一种基于香农熵的基于复合轮廓的多级阈值分割方法。该方法通过最大化香农熵差来选择合适的多尺度乘法图像,并通过动态组合轮廓图像构建新的香农熵目标函数。最后,通过对局部轮廓香农熵的积分,自动确定多个阈值。在复杂背景、低对比度、边界模糊和尺寸不平衡的合成图像和真实图像上的实验结果表明,该方法优于最近提出的六种基于马修相关系数的多级阈值分割方法,在不需要复杂参数调整的情况下具有更强的分割适应性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信