Shaping the future of tobacco through microbial insights: a review of advances and applications.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-05-12 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1548323
Wei Hu, Jiaxing Yuan, Jiaxiang Fei, Kaleem Imdad, Pengfei Yang, Shen Huang, Duobin Mao, Jing Yang
{"title":"Shaping the future of tobacco through microbial insights: a review of advances and applications.","authors":"Wei Hu, Jiaxing Yuan, Jiaxiang Fei, Kaleem Imdad, Pengfei Yang, Shen Huang, Duobin Mao, Jing Yang","doi":"10.3389/fbioe.2025.1548323","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 20 years, researchers have used multi-omics techniques to study microbial diversity and metabolic function on tobacco leaves. The unique metabolic function of tobacco microorganisms has attracted extensive attention from researchers, which is an important research field in tobacco industry to improve the intrinsic quality of tobacco leaf with microbial agents. The microorganisms are particularly rich on the surface of tobacco leaf, and their metabolic function is closely related to the change of tobacco leaf chemical composition. Some microorganisms have important metabolic functions, such as: degrading macromolecular and harmful substances in tobacco leaves, and they have different degradation rates and pathways for the substances. At present, many functions of tobacco leaf microorganisms have not been fully verified and analyzed. In the future, more novel culture methods are needed to screen and isolate microorganisms on the surface of tobacco leaves, deeply tap their metabolic potential, explore the application value of microorganisms in the tobacco industry, and further promote the innovation and development of the industry.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1548323"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1548323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past 20 years, researchers have used multi-omics techniques to study microbial diversity and metabolic function on tobacco leaves. The unique metabolic function of tobacco microorganisms has attracted extensive attention from researchers, which is an important research field in tobacco industry to improve the intrinsic quality of tobacco leaf with microbial agents. The microorganisms are particularly rich on the surface of tobacco leaf, and their metabolic function is closely related to the change of tobacco leaf chemical composition. Some microorganisms have important metabolic functions, such as: degrading macromolecular and harmful substances in tobacco leaves, and they have different degradation rates and pathways for the substances. At present, many functions of tobacco leaf microorganisms have not been fully verified and analyzed. In the future, more novel culture methods are needed to screen and isolate microorganisms on the surface of tobacco leaves, deeply tap their metabolic potential, explore the application value of microorganisms in the tobacco industry, and further promote the innovation and development of the industry.

通过微生物洞察塑造烟草的未来:进展和应用综述。
在过去的20年里,研究人员利用多组学技术研究了烟草叶片上的微生物多样性和代谢功能。烟草微生物独特的代谢功能引起了研究者的广泛关注,利用微生物制剂提高烟叶内在品质是烟草工业的一个重要研究领域。烟叶表面微生物特别丰富,其代谢功能与烟叶化学成分的变化密切相关。有些微生物具有重要的代谢功能,如:降解烟叶中的大分子和有害物质,它们对这些物质有不同的降解速率和途径。目前,烟草叶片微生物的许多功能还没有得到充分的验证和分析。未来需要更多新颖的培养方法对烟叶表面微生物进行筛选分离,深度挖掘其代谢潜能,探索微生物在烟草行业的应用价值,进一步推动行业创新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信