Rafał Brociek, Józef Szczotka, Mariusz Pleszczyński, Francesca Nanni, Christian Napoli
{"title":"Investigation of the Internal Structure of Hard-to-Reach Objects Using a Hybrid Algorithm on the Example of Walls.","authors":"Rafał Brociek, Józef Szczotka, Mariusz Pleszczyński, Francesca Nanni, Christian Napoli","doi":"10.3390/e27050534","DOIUrl":null,"url":null,"abstract":"<p><p>The article presents research on the application of computed tomography with an incomplete dataset to the problem of examining the internal structure of walls. The case of incomplete information in computed tomography often occurs in various applications, e.g., when examining large objects or when examining hard-to-reach objects. Algorithms dedicated to this type of problem can be used to detect anomalies (defects, cracks) in the walls, among other artifacts. Situations of this type may occur, for example, in old buildings, where special caution should be exercised. The approach presented in the article consists of a non-standard solution to the problem of reconstructing the internal structure of the tested object. The classical approach involves constructing an appropriate system of equations based on X-rays, the solution of which describes the structure. However, this approach has a drawback: solving such systems of equations is computationally very complex, because the algorithms used, combined with incomplete information, converge very slowly. In this article, we propose a different approach that eliminates this problem. To simulate the structure of the tested object, we use a hybrid algorithm that is a combination of a metaheuristic optimization algorithm (Group Teaching Optimization Algorithm) and a numerical optimization method (Hook-Jeeves method). In order to solve the considered inverse problem, a functional measuring the fit of the model to the measurement data is created. The hybrid algorithm presented in this paper was used to find the minimum of this functional. This paper also shows computational examples illustrating the effectiveness of the algorithms.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050534","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents research on the application of computed tomography with an incomplete dataset to the problem of examining the internal structure of walls. The case of incomplete information in computed tomography often occurs in various applications, e.g., when examining large objects or when examining hard-to-reach objects. Algorithms dedicated to this type of problem can be used to detect anomalies (defects, cracks) in the walls, among other artifacts. Situations of this type may occur, for example, in old buildings, where special caution should be exercised. The approach presented in the article consists of a non-standard solution to the problem of reconstructing the internal structure of the tested object. The classical approach involves constructing an appropriate system of equations based on X-rays, the solution of which describes the structure. However, this approach has a drawback: solving such systems of equations is computationally very complex, because the algorithms used, combined with incomplete information, converge very slowly. In this article, we propose a different approach that eliminates this problem. To simulate the structure of the tested object, we use a hybrid algorithm that is a combination of a metaheuristic optimization algorithm (Group Teaching Optimization Algorithm) and a numerical optimization method (Hook-Jeeves method). In order to solve the considered inverse problem, a functional measuring the fit of the model to the measurement data is created. The hybrid algorithm presented in this paper was used to find the minimum of this functional. This paper also shows computational examples illustrating the effectiveness of the algorithms.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.