{"title":"Research on Cold Chain Logistics Joint Distribution Vehicle Routing Optimization Based on Uncertainty Entropy and Time-Varying Network.","authors":"Huaixia Shi, Yu Hong, Qinglei Zhang, Jiyun Qin","doi":"10.3390/e27050540","DOIUrl":null,"url":null,"abstract":"<p><p>The sharing economy is an inevitable trend in cold chain logistics. Most cold chain logistics enterprises are small and operate independently, with limited collaboration. Joint distribution is key to integrating cold chain logistics and the sharing economy. It aims to share logistics resources, provide collective customer service, and optimize distribution routes. However, existing studies have overlooked uncertainty factors in joint distribution optimization. To address this, we propose the Cold Chain Logistics Joint Distribution Vehicle Routing Problem with Time-Varying Network (CCLJDVRP-TVN). This model integrates traffic congestion uncertainty and constructs a time-varying network to reflect real-world conditions. The solution combines simulated annealing strategies with genetic algorithms. It also uses the entropy mechanism to optimize uncertainties, improving global search performance. The method was applied to optimize vehicle routing for three cold chain logistics companies in Beijing. The results show a reduction in logistics costs by 18.3%, carbon emissions by 15.8%, and fleet size by 12.5%. It also effectively addresses the impact of congestion and uncertainty on distribution. This study offers valuable theoretical support for optimizing joint distribution and managing uncertainties in cold chain logistics.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050540","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sharing economy is an inevitable trend in cold chain logistics. Most cold chain logistics enterprises are small and operate independently, with limited collaboration. Joint distribution is key to integrating cold chain logistics and the sharing economy. It aims to share logistics resources, provide collective customer service, and optimize distribution routes. However, existing studies have overlooked uncertainty factors in joint distribution optimization. To address this, we propose the Cold Chain Logistics Joint Distribution Vehicle Routing Problem with Time-Varying Network (CCLJDVRP-TVN). This model integrates traffic congestion uncertainty and constructs a time-varying network to reflect real-world conditions. The solution combines simulated annealing strategies with genetic algorithms. It also uses the entropy mechanism to optimize uncertainties, improving global search performance. The method was applied to optimize vehicle routing for three cold chain logistics companies in Beijing. The results show a reduction in logistics costs by 18.3%, carbon emissions by 15.8%, and fleet size by 12.5%. It also effectively addresses the impact of congestion and uncertainty on distribution. This study offers valuable theoretical support for optimizing joint distribution and managing uncertainties in cold chain logistics.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.