{"title":"Epidemic Dynamics and Intervention Measures in Campus Settings Based on Multilayer Temporal Networks.","authors":"Xianyang Zhang, Ming Tang","doi":"10.3390/e27050543","DOIUrl":null,"url":null,"abstract":"<p><p>This study simulates the spread of epidemics on university campuses using a multilayer temporal network model combined with the SEIR (Susceptible-Exposed-Infectious-Recovered) transmission model. The proposed approach explicitly captures the time-varying contact patterns across four distinct layers (Rest, Dining, Activity, and Academic) to reflect realistic student mobility driven by class schedules and spatial constraints. It evaluates the impact of various intervention measures on epidemic spreading, including subnetwork closure and zoned management. Our analysis reveals that the Academic and Activity layers emerge as high-risk transmission hubs due to their dynamic, high-density contact structures. Intervention measures exhibit layer-dependent efficacy: zoned management is highly effective in high-contact subnetworks, its impact on low-contact subnetworks remains limited. Consequently, intervention measures must be dynamically adjusted based on the characteristics of each subnetwork and the epidemic situations, with higher participation rates enhancing the effectiveness of these measures. This work advances methodological innovation in temporal network epidemiology by bridging structural dynamics with SEIR processes, offering actionable insights for campus-level pandemic preparedness. The findings underscore the necessity of layer-aware policies to optimize resource allocation in complex, time-dependent contact systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050543","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study simulates the spread of epidemics on university campuses using a multilayer temporal network model combined with the SEIR (Susceptible-Exposed-Infectious-Recovered) transmission model. The proposed approach explicitly captures the time-varying contact patterns across four distinct layers (Rest, Dining, Activity, and Academic) to reflect realistic student mobility driven by class schedules and spatial constraints. It evaluates the impact of various intervention measures on epidemic spreading, including subnetwork closure and zoned management. Our analysis reveals that the Academic and Activity layers emerge as high-risk transmission hubs due to their dynamic, high-density contact structures. Intervention measures exhibit layer-dependent efficacy: zoned management is highly effective in high-contact subnetworks, its impact on low-contact subnetworks remains limited. Consequently, intervention measures must be dynamically adjusted based on the characteristics of each subnetwork and the epidemic situations, with higher participation rates enhancing the effectiveness of these measures. This work advances methodological innovation in temporal network epidemiology by bridging structural dynamics with SEIR processes, offering actionable insights for campus-level pandemic preparedness. The findings underscore the necessity of layer-aware policies to optimize resource allocation in complex, time-dependent contact systems.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.