Bootstrap Confidence Intervals for Multiple Change Points Based on Two-Stage Procedures.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-05-17 DOI:10.3390/e27050537
Li Hou, Baisuo Jin, Yuehua Wu, Fangwei Wang
{"title":"Bootstrap Confidence Intervals for Multiple Change Points Based on Two-Stage Procedures.","authors":"Li Hou, Baisuo Jin, Yuehua Wu, Fangwei Wang","doi":"10.3390/e27050537","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the construction of confidence intervals for multiple change points in linear regression models. First, we detect multiple change points by performing variable selection on blocks of the input sequence; second, we re-estimate their exact locations in a refinement step. Specifically, we exploit an orthogonal greedy algorithm to recover the number of change points consistently in the cutting stage, and employ the sup-Wald-type test statistic to determine the locations of multiple change points in the refinement stage. Based on a two-stage procedure, we propose bootstrapping the estimated centered error sequence, which can accommodate unknown magnitudes of changes and ensure the asymptotic validity of the proposed bootstrapping method. This enables us to construct confidence intervals using the empirical distribution of the resampled data. The proposed method is illustrated with simulations and real data examples.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050537","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the construction of confidence intervals for multiple change points in linear regression models. First, we detect multiple change points by performing variable selection on blocks of the input sequence; second, we re-estimate their exact locations in a refinement step. Specifically, we exploit an orthogonal greedy algorithm to recover the number of change points consistently in the cutting stage, and employ the sup-Wald-type test statistic to determine the locations of multiple change points in the refinement stage. Based on a two-stage procedure, we propose bootstrapping the estimated centered error sequence, which can accommodate unknown magnitudes of changes and ensure the asymptotic validity of the proposed bootstrapping method. This enables us to construct confidence intervals using the empirical distribution of the resampled data. The proposed method is illustrated with simulations and real data examples.

基于两阶段过程的多变化点自举置信区间。
研究了线性回归模型中多变化点置信区间的构造问题。首先,我们通过对输入序列的块执行变量选择来检测多个变化点;其次,我们在细化步骤中重新估计它们的确切位置。具体而言,我们利用正交贪婪算法在切割阶段一致地恢复变化点的数量,并在细化阶段使用supwald型检验统计量确定多个变化点的位置。基于两阶段的方法,我们提出了对估计的中心误差序列进行自举,该方法可以适应未知的变化幅度,并保证了所提出的自举方法的渐近有效性。这使我们能够利用重采样数据的经验分布构造置信区间。通过仿真和实际数据算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信