{"title":"Notch signaling in neurogenesis.","authors":"Madison McLaren, Jessica Butts","doi":"10.1242/dev.204589","DOIUrl":null,"url":null,"abstract":"<p><p>The Notch signaling pathway plays a crucial role in neurogenesis by regulating cell fate specification. However, its complexity poses challenges in uncovering the mechanisms underlying these decisions. This Review explores the intricacies of the Notch pathway, including its diverse activation mechanisms and the influence of post-translational modifications of Notch receptors and ligands on pathway outcomes. We discuss how Notch signaling regulates embryonic neurogenesis via interactions with proneural genes and with other signaling pathways. We also examine the role of Notch in adult neurogenesis, and the therapeutic potential of leveraging Notch signaling to reprogram glia in the adult brain. Lastly, we highlight emerging technologies that measure Notch dynamics and discuss remaining knowledge gaps. Together, these insights underscore the multifaceted role of Notch signaling and outline key directions for future research.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204589","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Notch signaling pathway plays a crucial role in neurogenesis by regulating cell fate specification. However, its complexity poses challenges in uncovering the mechanisms underlying these decisions. This Review explores the intricacies of the Notch pathway, including its diverse activation mechanisms and the influence of post-translational modifications of Notch receptors and ligands on pathway outcomes. We discuss how Notch signaling regulates embryonic neurogenesis via interactions with proneural genes and with other signaling pathways. We also examine the role of Notch in adult neurogenesis, and the therapeutic potential of leveraging Notch signaling to reprogram glia in the adult brain. Lastly, we highlight emerging technologies that measure Notch dynamics and discuss remaining knowledge gaps. Together, these insights underscore the multifaceted role of Notch signaling and outline key directions for future research.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.