{"title":"Xinshuaining preparation ameliorates doxorubicin-induced cardiac injury in heart failure rats by regulating gut microbiota.","authors":"Qian Nie, Jue Zhao, Sattar Haseeb, Siwei Deng, Xin Zhang, Rui Wang, Xu Luo, Wen Xie","doi":"10.1007/s13346-025-01879-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) has a serious impact on patients' lives and health. Gut microbiota plays an important role in the development of HF. Xinshuaining (XSN) preparation has a therapeutic effect on the HF. However, the mechanism of action of XSN in HF is still unclear. Our study aimed to explore the possible function and mechanism of XSN on HF induced by doxorubicin (DOX) in rats. DOX-induced HF rat models were prepared, grouped and treated. The ultrasound indexes of rat heart were measured before sampling, and the indexes of cardiac pathology, fibrosis degree, gut microbiota and metabolites were detected by ELISA, HE staining, Masson staining, immunohistochemistry, 16SrDNA sequencing, liquid chromatography-mass spectrometry (LC/MS) after sampling. XSN can significantly improve the cardiac function of HF rats, including increasing LVEF, LVFS, decreasing LVESD, LVESV, LVEDV levels, and at the same time, XSN can also reduce the heart weight index, reduce the cardiac histopathological damage and fibrosis. In addition, XSN can regulate the abundance and function of gut microbiota, inhibit the level of TMAO, and regulate plasma metabolites in HF rats. In conclusions, XSN improves cardiac function and delays the process of cardiac fibrosis in HF rats, and its mechanism may be related to the regulation of gut microbiota and metabolites.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01879-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) has a serious impact on patients' lives and health. Gut microbiota plays an important role in the development of HF. Xinshuaining (XSN) preparation has a therapeutic effect on the HF. However, the mechanism of action of XSN in HF is still unclear. Our study aimed to explore the possible function and mechanism of XSN on HF induced by doxorubicin (DOX) in rats. DOX-induced HF rat models were prepared, grouped and treated. The ultrasound indexes of rat heart were measured before sampling, and the indexes of cardiac pathology, fibrosis degree, gut microbiota and metabolites were detected by ELISA, HE staining, Masson staining, immunohistochemistry, 16SrDNA sequencing, liquid chromatography-mass spectrometry (LC/MS) after sampling. XSN can significantly improve the cardiac function of HF rats, including increasing LVEF, LVFS, decreasing LVESD, LVESV, LVEDV levels, and at the same time, XSN can also reduce the heart weight index, reduce the cardiac histopathological damage and fibrosis. In addition, XSN can regulate the abundance and function of gut microbiota, inhibit the level of TMAO, and regulate plasma metabolites in HF rats. In conclusions, XSN improves cardiac function and delays the process of cardiac fibrosis in HF rats, and its mechanism may be related to the regulation of gut microbiota and metabolites.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.