Nikhil S Rao, Marson Putra, Christina Meyer, Sirisha Parameswaran, Thimmasettappa Thippeswamy
{"title":"The Effects of Neuronal <i>Fyn</i> Knockdown in the Hippocampus in the Rat Kainate Model of Temporal Lobe Epilepsy.","authors":"Nikhil S Rao, Marson Putra, Christina Meyer, Sirisha Parameswaran, Thimmasettappa Thippeswamy","doi":"10.3390/cells14100743","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have demonstrated neuronal and microglial Fyn, a Src family kinase (SFK), and how its interactions with tau contribute to epileptogenesis. Saracatinib, a Fyn/SFK inhibitor, modifies disease progression in rat kainate (KA) epilepsy models. In this study, we investigated neuronal-specific <i>fyn</i> knockdown effects on Fyn-tau signaling, neurodegeneration, and gliosis using a calcium/calmodulin-dependent protein kinase II (CaMKII)-promoter-driven adeno-associated viral vector (AAV9)-mediated <i>fyn</i>-shRNA injection in the rat hippocampus. Eight days following AAV administration, rats received repeated low-dose KA injections intraperitoneally to induce <i>status epilepticus</i> (SE). Both <i>fyn</i>-shRNA and control groups showed comparable SE severity, indicating inadequate neuronal <i>fyn</i> knockdown at this timepoint. Two weeks post <i>fyn</i>-shRNA injection, hippocampal Fyn significantly decreased, alongside reductions in NR2B, pNR2B<sup>Y1472</sup>, PSD95, and total tau. There was also a compensatory activation of SFK (pSFK<sup>Y416</sup>:Fyn) and tau hyperphosphorylation (AT8:total tau), negatively correlating with NeuN expression. Proximity ligation assay indicated unchanged Fyn-tau interactions, suggesting tau interactions with alternative SH3 domain proteins. Persistent neuronal loss, astrogliosis, and microgliosis suggested limited effectiveness of neuronal-specific <i>fyn</i> knockdown at this timepoint. An extended-duration <i>fyn</i> knockdown study, or using broad SFK inhibitors such as saracatinib or tau-SH3 blocking peptides, may effectively prevent SE-induced epileptogenesis.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14100743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have demonstrated neuronal and microglial Fyn, a Src family kinase (SFK), and how its interactions with tau contribute to epileptogenesis. Saracatinib, a Fyn/SFK inhibitor, modifies disease progression in rat kainate (KA) epilepsy models. In this study, we investigated neuronal-specific fyn knockdown effects on Fyn-tau signaling, neurodegeneration, and gliosis using a calcium/calmodulin-dependent protein kinase II (CaMKII)-promoter-driven adeno-associated viral vector (AAV9)-mediated fyn-shRNA injection in the rat hippocampus. Eight days following AAV administration, rats received repeated low-dose KA injections intraperitoneally to induce status epilepticus (SE). Both fyn-shRNA and control groups showed comparable SE severity, indicating inadequate neuronal fyn knockdown at this timepoint. Two weeks post fyn-shRNA injection, hippocampal Fyn significantly decreased, alongside reductions in NR2B, pNR2BY1472, PSD95, and total tau. There was also a compensatory activation of SFK (pSFKY416:Fyn) and tau hyperphosphorylation (AT8:total tau), negatively correlating with NeuN expression. Proximity ligation assay indicated unchanged Fyn-tau interactions, suggesting tau interactions with alternative SH3 domain proteins. Persistent neuronal loss, astrogliosis, and microgliosis suggested limited effectiveness of neuronal-specific fyn knockdown at this timepoint. An extended-duration fyn knockdown study, or using broad SFK inhibitors such as saracatinib or tau-SH3 blocking peptides, may effectively prevent SE-induced epileptogenesis.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.