{"title":"Cooperative Role of Carbonic Anhydrase IX/XII in Driving Tumor Invasion and Metastasis: A Novel Targeted Therapeutic Strategy.","authors":"Hanyu Yang, Rui Chen, Xiang Zheng, Yufan Luo, Mingxuan Yao, Famin Ke, Xiurong Guo, Xiaoyan Liu, Qiuyu Liu","doi":"10.3390/cells14100693","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer invasion and metastasis are critical factors that influence patient prognosis. Carbonic anhydrase IX (CA IX) and carbonic anhydrase XII (CA XII) are key regulators of hypoxia and pH homeostasis in the tumor microenvironment (TME). It has been verified that both CA IX and CA XII play significant roles in promoting tumor metastasis in recent years, but most of the literature tends to treat them as separate entities rather than exploring their synergistic effects. This review provides a comprehensive overview of the roles of CA IX and CA XII in tumor invasion and metastasis, along with their clinical applications, including their spatial distribution characteristics, molecular mechanisms that facilitate tumor metastasis, and their potential for clinical translation. Moreover, this review incorporates the classical tumor core-invasive front model to propose a metabolic coupling model of CA IX and CA XII, offering a fresh perspective on precision therapies that target tumor metabolism. By emphasizing the metabolic coupling between these two molecules, this review offers new insights distinct from previous studies and highlights the clinical therapeutic potential of simultaneously targeting both during treatment. It sheds new light on future research and clinical applications, aiming to enhance the prognosis of cancer patients through innovative therapeutic strategies.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14100693","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer invasion and metastasis are critical factors that influence patient prognosis. Carbonic anhydrase IX (CA IX) and carbonic anhydrase XII (CA XII) are key regulators of hypoxia and pH homeostasis in the tumor microenvironment (TME). It has been verified that both CA IX and CA XII play significant roles in promoting tumor metastasis in recent years, but most of the literature tends to treat them as separate entities rather than exploring their synergistic effects. This review provides a comprehensive overview of the roles of CA IX and CA XII in tumor invasion and metastasis, along with their clinical applications, including their spatial distribution characteristics, molecular mechanisms that facilitate tumor metastasis, and their potential for clinical translation. Moreover, this review incorporates the classical tumor core-invasive front model to propose a metabolic coupling model of CA IX and CA XII, offering a fresh perspective on precision therapies that target tumor metabolism. By emphasizing the metabolic coupling between these two molecules, this review offers new insights distinct from previous studies and highlights the clinical therapeutic potential of simultaneously targeting both during treatment. It sheds new light on future research and clinical applications, aiming to enhance the prognosis of cancer patients through innovative therapeutic strategies.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.