Ao Liu, Xiaoling Deng, Shuhui Hou, Yuwen Xi, Keshu Xu
{"title":"Activated Immune and Complement C3 Are Potential Contributors in MASH via Stimulating Neutrophil Extracellular Traps.","authors":"Ao Liu, Xiaoling Deng, Shuhui Hou, Yuwen Xi, Keshu Xu","doi":"10.3390/cells14100740","DOIUrl":null,"url":null,"abstract":"<p><p>The number of metabolic dysfunction-associated steatotic liver disease (MASLD) patients is increasing rapidly. More attention has been paid to the relationship between immunity and MASLD. This study explored the roles of serum autoantibodies, immunoglobulins, and complements in MASLD. A total of 182 MASLD patients were investigated and grouped by autoantibody or NAS scores. Correlation between immunology and clinical features was assessed. In addition, metabolic dysfunction-associated steatohepatitis (MASH) models were constructed to verify the findings. Neutrophils were isolated from mice and treated with complement C3 to investigate the association between C3 and neutrophil extracellular traps (NETs). IgG, IgM, and NAS scores in the autoantibody positive group were significantly higher than those in the autoantibody negative group. Antinuclear antibodies (ANA), IgA, IgE, IgG, C3, C4, ALT, and AST were related to MASH. Meanwhile, IgA and C3 correlated with the severity of MASLD. The ROC curve showed that IgA > 2.990 g/L or C3 > 1.115 g/L predicted the presence of MASH. More importantly, IgG, activated C3, and NETs were increased in MASH. C3 stimulation directly induced NET formation in the neutrophils. Immunity systems were activated in MASH and elevated IgG activated C3 to stimulate the production of NETs, thus exacerbating MASH.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14100740","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The number of metabolic dysfunction-associated steatotic liver disease (MASLD) patients is increasing rapidly. More attention has been paid to the relationship between immunity and MASLD. This study explored the roles of serum autoantibodies, immunoglobulins, and complements in MASLD. A total of 182 MASLD patients were investigated and grouped by autoantibody or NAS scores. Correlation between immunology and clinical features was assessed. In addition, metabolic dysfunction-associated steatohepatitis (MASH) models were constructed to verify the findings. Neutrophils were isolated from mice and treated with complement C3 to investigate the association between C3 and neutrophil extracellular traps (NETs). IgG, IgM, and NAS scores in the autoantibody positive group were significantly higher than those in the autoantibody negative group. Antinuclear antibodies (ANA), IgA, IgE, IgG, C3, C4, ALT, and AST were related to MASH. Meanwhile, IgA and C3 correlated with the severity of MASLD. The ROC curve showed that IgA > 2.990 g/L or C3 > 1.115 g/L predicted the presence of MASH. More importantly, IgG, activated C3, and NETs were increased in MASH. C3 stimulation directly induced NET formation in the neutrophils. Immunity systems were activated in MASH and elevated IgG activated C3 to stimulate the production of NETs, thus exacerbating MASH.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.