Manuela Bozzi, Francesca Sciandra, Maria Giulia Bigotti, Andrea Brancaccio
{"title":"Misregulation of the Ubiquitin-Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin-Glycoprotein Complex.","authors":"Manuela Bozzi, Francesca Sciandra, Maria Giulia Bigotti, Andrea Brancaccio","doi":"10.3390/cells14100721","DOIUrl":null,"url":null,"abstract":"<p><p>The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14100721","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.