Attention-Based Multi-Objective Control for Morphing Aircraft.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qien Fu, Changyin Sun
{"title":"Attention-Based Multi-Objective Control for Morphing Aircraft.","authors":"Qien Fu, Changyin Sun","doi":"10.3390/biomimetics10050280","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a learning-based joint morphing and flight control framework for avian-inspired morphing aircraft. Firstly, a novel multi-objective multi-phase optimal control problem is formulated to synthesize the comprehensive flight missions, incorporating additional requirements such as fuel consumption, maneuverability, and agility of the morphing aircraft. Subsequently, an auxiliary problem, employing ϵ-constraint and augmented state methods, is introduced to yield a finite and locally Lipschitz continuous value function, which facilitates the construction of a neural network controller. Furthermore, a multi-phase pseudospectral method is derived to discretize the auxiliary problem and formulate the corresponding nonlinear programming problem, where open loop optimal solutions of the multi-task flight mission are generated. Finally, a learning-based feedback controller is established using data from the open loop solutions, where a temporal masked attention mechanism is developed to extract information from sequential data more efficiently. Simulation results demonstrate that the designed attention module in the learning scheme yields a significant 53.5% reduction in test loss compared to the baseline model. Additionally, the proposed learning-based joint morphing and flight controller achieves a 37.6% improvement in average tracking performance over the fixed wing configuration, while also satisfying performance requirements for fuel consumption, maneuverability, and agility.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a learning-based joint morphing and flight control framework for avian-inspired morphing aircraft. Firstly, a novel multi-objective multi-phase optimal control problem is formulated to synthesize the comprehensive flight missions, incorporating additional requirements such as fuel consumption, maneuverability, and agility of the morphing aircraft. Subsequently, an auxiliary problem, employing ϵ-constraint and augmented state methods, is introduced to yield a finite and locally Lipschitz continuous value function, which facilitates the construction of a neural network controller. Furthermore, a multi-phase pseudospectral method is derived to discretize the auxiliary problem and formulate the corresponding nonlinear programming problem, where open loop optimal solutions of the multi-task flight mission are generated. Finally, a learning-based feedback controller is established using data from the open loop solutions, where a temporal masked attention mechanism is developed to extract information from sequential data more efficiently. Simulation results demonstrate that the designed attention module in the learning scheme yields a significant 53.5% reduction in test loss compared to the baseline model. Additionally, the proposed learning-based joint morphing and flight controller achieves a 37.6% improvement in average tracking performance over the fixed wing configuration, while also satisfying performance requirements for fuel consumption, maneuverability, and agility.

变形飞行器基于注意力的多目标控制。
提出了一种基于学习的仿鸟变形飞行器关节变形与飞控框架。首先,考虑变形飞行器的燃油消耗、机动性和敏捷性等附加要求,提出了一种新的多目标多相最优控制问题。随后,引入了一个辅助问题,利用ϵ-constraint和增广状态法得到有限的局部Lipschitz连续值函数,从而便于神经网络控制器的构造。在此基础上,推导了一种多相伪谱方法,将辅助问题离散化,形成相应的非线性规划问题,生成多任务飞行任务的开环最优解。最后,利用开环解的数据建立了一个基于学习的反馈控制器,其中开发了一种时间掩蔽注意机制,以更有效地从序列数据中提取信息。仿真结果表明,与基线模型相比,设计的注意力模块在学习方案中的测试损失显著降低了53.5%。此外,所提出的基于学习的关节变形和飞行控制器在平均跟踪性能上比固定翼构型提高了37.6%,同时满足了燃油消耗、机动性和敏捷性的性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信