PDCG-Enhanced CNN for Pattern Recognition in Time Series Data.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Feng Xie, Ming Xie, Cheng Wang, Dongwei Li, Xuan Zhang
{"title":"PDCG-Enhanced CNN for Pattern Recognition in Time Series Data.","authors":"Feng Xie, Ming Xie, Cheng Wang, Dongwei Li, Xuan Zhang","doi":"10.3390/biomimetics10050263","DOIUrl":null,"url":null,"abstract":"<p><p>This study compares the effectiveness of three methods-Fréchet Distance, Dynamic Time Warping (DTW), and Convolutional Neural Networks (CNNs)-in detecting similarities and pattern recognition in time series. It proposes a Pattern-Driven Case Generator (PDCG) framework to automate the creation of labeled time series data for training CNN models, addressing the challenge of manual dataset curation. By injecting controlled noise and interpolating diverse shapes (e.g., W/M/nAn/vVv), a PDCG synthesizes realistic training data that enhances model robustness. Experimental results demonstrate that the CNN model, trained with 10,000 PDCG-generated cases, achieves 86-98% accuracy in pattern recognition, outperforming traditional methods (Fréchet and DTW) for complex, misaligned, and variable-length sequences. The PDCG-enhanced CNN's scalability and adaptability improve with larger datasets, validating the PDCG's efficacy in bridging simulation and real-world applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares the effectiveness of three methods-Fréchet Distance, Dynamic Time Warping (DTW), and Convolutional Neural Networks (CNNs)-in detecting similarities and pattern recognition in time series. It proposes a Pattern-Driven Case Generator (PDCG) framework to automate the creation of labeled time series data for training CNN models, addressing the challenge of manual dataset curation. By injecting controlled noise and interpolating diverse shapes (e.g., W/M/nAn/vVv), a PDCG synthesizes realistic training data that enhances model robustness. Experimental results demonstrate that the CNN model, trained with 10,000 PDCG-generated cases, achieves 86-98% accuracy in pattern recognition, outperforming traditional methods (Fréchet and DTW) for complex, misaligned, and variable-length sequences. The PDCG-enhanced CNN's scalability and adaptability improve with larger datasets, validating the PDCG's efficacy in bridging simulation and real-world applications.

pdcg增强CNN用于时间序列数据的模式识别。
本研究比较了三种方法的有效性- fr距离,动态时间翘曲(DTW)和卷积神经网络(cnn)-在时间序列中检测相似性和模式识别。它提出了一个模式驱动的案例生成器(PDCG)框架,用于自动创建用于训练CNN模型的标记时间序列数据,解决了手动数据集管理的挑战。通过注入可控噪声和插值不同形状(如W/M/nAn/vVv), PDCG合成了真实的训练数据,增强了模型的鲁棒性。实验结果表明,经过10000个pdcg生成案例的训练,CNN模型在模式识别方面达到了86-98%的准确率,在复杂、不对齐和变长序列方面优于传统的方法(fr和DTW)。PDCG增强的CNN的可扩展性和适应性在更大的数据集上得到改善,验证了PDCG在桥接模拟和实际应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信