{"title":"An Enhanced Starfish Optimization Algorithm via Joint Strategy and Its Application in Ultra-Wideband Indoor Positioning.","authors":"Yu Liu, Maosheng Fu, Zhengyu Liu, Huaiqing Liu, Wei Peng, Ling Li, Yang Yang, Xiancun Zhou, Chaochuan Jia","doi":"10.3390/biomimetics10050338","DOIUrl":null,"url":null,"abstract":"<p><p>The starfish optimization algorithm (SFOA) is a metaheuristic evolutionary intelligence algorithm with a great global search capability and strong adaptability. Although the SFOA has a good global search capability, it is not accurate enough in local search and converges slowly. To further enhance this convergence ability and global optimization ability, an enhanced starfish optimization algorithm (SFOAL) is proposed that combines sine chaotic mapping, <i>t</i>-distribution mutation, and logarithmic spiral reverse learning. The SFOAL can remarkably enhance both the global and local convergence capabilities of the algorithm, leading to a more rapid convergence speed and greater stability. In total, 23 benchmark functions and CEC2021 were used to test the development, search, and convergence capabilities of the SFOAL. The SFOAL was compared in detail with other algorithms. The experimental results demonstrated that the overall performance of the SFOAL was better than that of other algorithms, and the joint strategy could effectively balance the development and search capabilities to obtain stronger global and local optimization capabilities. For solving practical problems, the SFOAL was used to optimize the back propagation (BP) neural network to solve the ultra-wideband line-of-sight positioning problem. The results showed that the SFOAL-BP neural network had a smaller average position error compared to the random BP neural network and the SFOA-BP neural network, so it can be used to solve practical application problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The starfish optimization algorithm (SFOA) is a metaheuristic evolutionary intelligence algorithm with a great global search capability and strong adaptability. Although the SFOA has a good global search capability, it is not accurate enough in local search and converges slowly. To further enhance this convergence ability and global optimization ability, an enhanced starfish optimization algorithm (SFOAL) is proposed that combines sine chaotic mapping, t-distribution mutation, and logarithmic spiral reverse learning. The SFOAL can remarkably enhance both the global and local convergence capabilities of the algorithm, leading to a more rapid convergence speed and greater stability. In total, 23 benchmark functions and CEC2021 were used to test the development, search, and convergence capabilities of the SFOAL. The SFOAL was compared in detail with other algorithms. The experimental results demonstrated that the overall performance of the SFOAL was better than that of other algorithms, and the joint strategy could effectively balance the development and search capabilities to obtain stronger global and local optimization capabilities. For solving practical problems, the SFOAL was used to optimize the back propagation (BP) neural network to solve the ultra-wideband line-of-sight positioning problem. The results showed that the SFOAL-BP neural network had a smaller average position error compared to the random BP neural network and the SFOA-BP neural network, so it can be used to solve practical application problems.