{"title":"A Particle Swarm Optimization-Guided Ivy Algorithm for Global Optimization Problems.","authors":"Kaifan Zhang, Fujiang Yuan, Yang Jiang, Zebing Mao, Zihao Zuo, Yanhong Peng","doi":"10.3390/biomimetics10050342","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, metaheuristic algorithms have garnered significant attention for their efficiency in solving complex optimization problems. However, their performance critically depends on maintaining a balance between global exploration and local exploitation; a deficiency in either can result in premature convergence to local optima or low convergence efficiency. To address this challenge, this paper proposes an enhanced ivy algorithm guided by a particle swarm optimization (PSO) mechanism, referred to as IVYPSO. This hybrid approach integrates PSO's velocity update strategy for global searches with the ivy algorithm's growth strategy for local exploitation and introduces an ivy-inspired variable to intensify random perturbations. These enhancements collectively improve the algorithm's ability to escape local optima and enhance the search stability. Furthermore, IVYPSO adaptively selects between local growth and global diffusion strategies based on the fitness difference between the current solution and the global best, thereby improving the solution diversity and convergence accuracy. To assess the effectiveness of IVYPSO, comprehensive experiments were conducted on 26 standard benchmark functions and three real-world engineering optimization problems, with the performance compared against 11 state-of-the-art intelligent optimization algorithms. The results demonstrate that IVYPSO outperformed most competing algorithms on the majority of benchmark functions, exhibiting superior search capability and robustness. In the stability analysis, IVYPSO consistently achieved the global optimum across multiple runs on the three engineering cases with reduced computational time, attaining a 100% success rate (SR), which highlights its strong global optimization ability and excellent repeatability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050342","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, metaheuristic algorithms have garnered significant attention for their efficiency in solving complex optimization problems. However, their performance critically depends on maintaining a balance between global exploration and local exploitation; a deficiency in either can result in premature convergence to local optima or low convergence efficiency. To address this challenge, this paper proposes an enhanced ivy algorithm guided by a particle swarm optimization (PSO) mechanism, referred to as IVYPSO. This hybrid approach integrates PSO's velocity update strategy for global searches with the ivy algorithm's growth strategy for local exploitation and introduces an ivy-inspired variable to intensify random perturbations. These enhancements collectively improve the algorithm's ability to escape local optima and enhance the search stability. Furthermore, IVYPSO adaptively selects between local growth and global diffusion strategies based on the fitness difference between the current solution and the global best, thereby improving the solution diversity and convergence accuracy. To assess the effectiveness of IVYPSO, comprehensive experiments were conducted on 26 standard benchmark functions and three real-world engineering optimization problems, with the performance compared against 11 state-of-the-art intelligent optimization algorithms. The results demonstrate that IVYPSO outperformed most competing algorithms on the majority of benchmark functions, exhibiting superior search capability and robustness. In the stability analysis, IVYPSO consistently achieved the global optimum across multiple runs on the three engineering cases with reduced computational time, attaining a 100% success rate (SR), which highlights its strong global optimization ability and excellent repeatability.