Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yanping Yin, Sixiang Jia, Jing Zheng, Wei Wang, Ziwen Wang, Jiangbo Lin, Wenting Lin, Chao Feng, Shudong Xia, Weili Ge
{"title":"Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.","authors":"Yanping Yin, Sixiang Jia, Jing Zheng, Wei Wang, Ziwen Wang, Jiangbo Lin, Wenting Lin, Chao Feng, Shudong Xia, Weili Ge","doi":"10.1186/s12880-025-01740-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables.</p><p><strong>Methods: </strong>In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed.</p><p><strong>Results: </strong>The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups.</p><p><strong>Conclusion: </strong>LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"186"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01740-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables.

Methods: In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed.

Results: The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups.

Conclusion: LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.

左心耳特征的深度学习放射组学预测房颤复发。
背景:左心房附件(LAA)结构重构是心房颤动(AF)的特征,LAA形态影响射频导管消融(RFCA)的结果。在这项研究中,我们旨在利用LAA形态学特征、深度学习(DL)放射组学和临床变量建立并验证AF消融结果的预测模型。方法:在这项多中心回顾性研究中,分析了2016年1月至2022年12月在三家三级医院连续行房颤RFCA的480例患者,随访至2023年12月。系统收集术前CT血管造影(CTA)图像和实验室数据。使用基于nnunet的模型进行LAA分割,然后进行放射特征提取。Cox比例风险回归分析评估了AF复发与LAA体积之间的关系。使用分层抽样将数据集随机分为训练组(70%)和验证组(30%)。建立了结合LAA DL放射组学与临床变量的房颤复发预测模型。结果:该队列的中位随访时间为22个月(IQR 15-32), 103例患者(21.5%)出现房颤复发。nnUNet分割模型的Dice系数为0.89。多因素分析显示,LAA容积与每单位增加5.8%的危害风险相关(aHR 1.058, 95% CI 1.021-1.095;p = 0.002)。将LAA DL放射组学与临床变量相结合的模型在测试集中显示AUC为0.92 (95% CI 0.87-0.96),在亚组中保持稳健的预测性能。结论:LAA形态和体积与AF RFCA结果密切相关。我们开发了LAA分割网络和结合DL放射组学和临床变量的预测模型来估计AF复发的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信