Lin Yang, Qinghua Chen, Junjie Mu, Tangying Liu, Xiaoxiao Li, Shuxiang Cai
{"title":"Research on Capacitated Multi-Ship Replenishment Path Planning Problem Based on the Synergistic Hybrid Optimization Algorithm.","authors":"Lin Yang, Qinghua Chen, Junjie Mu, Tangying Liu, Xiaoxiao Li, Shuxiang Cai","doi":"10.3390/biomimetics10050285","DOIUrl":null,"url":null,"abstract":"<p><p>Ship replenishment path planning is a critical problem in the field of maritime logistics. This study proposes a novel synergistic hybrid optimization algorithm (SHOA) that effectively integrates ant colony optimization (ACO), the Clarke-Wright algorithm (CW), and the genetic algorithm (GA) to solve the capacitated multi-ship replenishment path planning problem (CMSRPPP). The proposed methodology employs a three-stage optimization framework: (1) initial path generation via parallel execution of the CW and ACO; (2) population initialization for the GA by strategically combining optimal solutions from ACO and the CW with randomized solutions; (3) iterative refinement using an enhanced GA featuring an embedded evolutionary reversal operation for local intensification. To evaluate performance, the SHOA is benchmarked against ACO, the GA, the particle swarm optimization algorithm, and the simulated annealing algorithm for the capacitated vehicle routing problem. Finally, the SHOA is applied to diverse CMSRPPP instances, demonstrating high adaptability, robust planning capabilities, and promising practical potential.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ship replenishment path planning is a critical problem in the field of maritime logistics. This study proposes a novel synergistic hybrid optimization algorithm (SHOA) that effectively integrates ant colony optimization (ACO), the Clarke-Wright algorithm (CW), and the genetic algorithm (GA) to solve the capacitated multi-ship replenishment path planning problem (CMSRPPP). The proposed methodology employs a three-stage optimization framework: (1) initial path generation via parallel execution of the CW and ACO; (2) population initialization for the GA by strategically combining optimal solutions from ACO and the CW with randomized solutions; (3) iterative refinement using an enhanced GA featuring an embedded evolutionary reversal operation for local intensification. To evaluate performance, the SHOA is benchmarked against ACO, the GA, the particle swarm optimization algorithm, and the simulated annealing algorithm for the capacitated vehicle routing problem. Finally, the SHOA is applied to diverse CMSRPPP instances, demonstrating high adaptability, robust planning capabilities, and promising practical potential.