A Gaussian Mixture Model-Based Unsupervised Dendritic Artificial Visual System for Motion Direction Detection.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhiyu Qiu, Yuxiao Hua, Tianqi Chen, Yuki Todo, Zheng Tang, Delai Qiu, Chunping Chu
{"title":"A Gaussian Mixture Model-Based Unsupervised Dendritic Artificial Visual System for Motion Direction Detection.","authors":"Zhiyu Qiu, Yuxiao Hua, Tianqi Chen, Yuki Todo, Zheng Tang, Delai Qiu, Chunping Chu","doi":"10.3390/biomimetics10050332","DOIUrl":null,"url":null,"abstract":"<p><p>Motion perception is a fundamental function of biological visual systems, enabling organisms to navigate dynamic environments, detect threats, and track moving objects. Inspired by the mechanisms of biological motion processing, we propose an Unsupervised Artificial Visual System for motion direction detection. Unlike traditional supervised learning approaches, our model employs unsupervised learning to classify local motion direction detection neurons and group those with similar directional preferences to form macroscopic motion direction detection neurons. The activation of these neurons is proportional to the received input, and the neuron with the highest activation determines the macroscopic motion direction of the object. The proposed system consists of two layers: a local motion direction detection layer and an unsupervised global motion direction detection layer. For local motion detection, we adopt the Local Motion Detection Neuron (LMDN) model proposed in our previous work, which detects motion in eight different directions. The outputs of these neurons serve as inputs to the global motion direction detection layer, which employs a Gaussian Mixture Model (GMM) for unsupervised clustering. GMM, a probabilistic clustering method, effectively classifies local motion detection neurons according to their preferred directions, aligning with biological principles of sensory adaptation and probabilistic neural processing. Through repeated exposure to motion stimuli, our model self-organizes to detect macroscopic motion direction without the need for labeled data. Experimental results demonstrate that the GMM-based global motion detection layer successfully classifies motion direction signals, forming structured motion representations akin to biological visual systems. Furthermore, the system achieves motion direction detection accuracy comparable to previous supervised models while offering a more biologically plausible mechanism. This work highlights the potential of unsupervised learning in artificial vision and contributes to the development of adaptive motion perception models inspired by neural computation.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050332","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Motion perception is a fundamental function of biological visual systems, enabling organisms to navigate dynamic environments, detect threats, and track moving objects. Inspired by the mechanisms of biological motion processing, we propose an Unsupervised Artificial Visual System for motion direction detection. Unlike traditional supervised learning approaches, our model employs unsupervised learning to classify local motion direction detection neurons and group those with similar directional preferences to form macroscopic motion direction detection neurons. The activation of these neurons is proportional to the received input, and the neuron with the highest activation determines the macroscopic motion direction of the object. The proposed system consists of two layers: a local motion direction detection layer and an unsupervised global motion direction detection layer. For local motion detection, we adopt the Local Motion Detection Neuron (LMDN) model proposed in our previous work, which detects motion in eight different directions. The outputs of these neurons serve as inputs to the global motion direction detection layer, which employs a Gaussian Mixture Model (GMM) for unsupervised clustering. GMM, a probabilistic clustering method, effectively classifies local motion detection neurons according to their preferred directions, aligning with biological principles of sensory adaptation and probabilistic neural processing. Through repeated exposure to motion stimuli, our model self-organizes to detect macroscopic motion direction without the need for labeled data. Experimental results demonstrate that the GMM-based global motion detection layer successfully classifies motion direction signals, forming structured motion representations akin to biological visual systems. Furthermore, the system achieves motion direction detection accuracy comparable to previous supervised models while offering a more biologically plausible mechanism. This work highlights the potential of unsupervised learning in artificial vision and contributes to the development of adaptive motion perception models inspired by neural computation.

基于高斯混合模型的无监督树突状人工视觉运动方向检测系统。
运动感知是生物视觉系统的基本功能,使生物体能够导航动态环境,检测威胁并跟踪移动物体。受生物运动处理机制的启发,我们提出了一种用于运动方向检测的无监督人工视觉系统。与传统的监督学习方法不同,我们的模型采用无监督学习对局部运动方向检测神经元进行分类,并将具有相似方向偏好的神经元分组形成宏观运动方向检测神经元。这些神经元的激活程度与接收到的输入成正比,激活程度最高的神经元决定了物体的宏观运动方向。该系统由两层组成:局部运动方向检测层和无监督全局运动方向检测层。对于局部运动检测,我们采用了我们之前工作中提出的局部运动检测神经元(LMDN)模型,该模型可以检测八个不同方向的运动。这些神经元的输出作为全局运动方向检测层的输入,该检测层采用高斯混合模型(GMM)进行无监督聚类。GMM是一种概率聚类方法,它根据局部运动检测神经元偏好的方向对其进行有效分类,符合感觉适应和概率神经处理的生物学原理。通过反复暴露于运动刺激,我们的模型自组织检测宏观运动方向,而不需要标记数据。实验结果表明,基于gmm的全局运动检测层成功地对运动方向信号进行了分类,形成了类似于生物视觉系统的结构化运动表征。此外,该系统实现了与以前的监督模型相当的运动方向检测精度,同时提供了更合理的生物学机制。这项工作强调了无监督学习在人工视觉中的潜力,并有助于受神经计算启发的自适应运动感知模型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信