A Bio-Inspired Learning Dendritic Motion Detection Framework with Direction-Selective Horizontal Cells.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Tianqi Chen, Yuki Todo, Zhiyu Qiu, Yuxiao Hua, Hiroki Sugiura, Zheng Tang
{"title":"A Bio-Inspired Learning Dendritic Motion Detection Framework with Direction-Selective Horizontal Cells.","authors":"Tianqi Chen, Yuki Todo, Zhiyu Qiu, Yuxiao Hua, Hiroki Sugiura, Zheng Tang","doi":"10.3390/biomimetics10050286","DOIUrl":null,"url":null,"abstract":"<p><p>Motion direction detection is an essential task for both computer vision and neuroscience. Inspired by the biological theory of the human visual system, we proposed a learnable horizontal-cell-based dendritic neuron model (HCdM) that captures motion direction with high efficiency while remaining highly robust. Unlike present deep learning models, which rely on extension of computation and extraction of global features, the HCdM mimics the localized processing of dendritic neurons, enabling efficient motion feature integration. Through synaptic learning that prunes unnecessary parts, our model maintains high accuracy in noised images, particularly against salt-and-pepper noise. Experimental results show that the HCdM reached over 99.5% test accuracy, maintained robust performance under 10% salt-and-pepper noise, and achieved cross-dataset generalization exceeding 80% in certain conditions. Comparisons with state-of-the-art (SOTA) models like vision transformers (ViTs) and convolutional neural networks (CNNs) demonstrate the HCdM's robustness and efficiency. Additionally, in contrast to previous artificial visual systems (AVSs), our findings suggest that lateral geniculate nucleus (LGN) structures, though present in biological vision, may not be essential for motion direction detection. This insight provides a new direction for bio-inspired computational models. Future research will focus on hybridizing the HCdM with SOTA models that perform well on complex visual scenes to enhance its adaptability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050286","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Motion direction detection is an essential task for both computer vision and neuroscience. Inspired by the biological theory of the human visual system, we proposed a learnable horizontal-cell-based dendritic neuron model (HCdM) that captures motion direction with high efficiency while remaining highly robust. Unlike present deep learning models, which rely on extension of computation and extraction of global features, the HCdM mimics the localized processing of dendritic neurons, enabling efficient motion feature integration. Through synaptic learning that prunes unnecessary parts, our model maintains high accuracy in noised images, particularly against salt-and-pepper noise. Experimental results show that the HCdM reached over 99.5% test accuracy, maintained robust performance under 10% salt-and-pepper noise, and achieved cross-dataset generalization exceeding 80% in certain conditions. Comparisons with state-of-the-art (SOTA) models like vision transformers (ViTs) and convolutional neural networks (CNNs) demonstrate the HCdM's robustness and efficiency. Additionally, in contrast to previous artificial visual systems (AVSs), our findings suggest that lateral geniculate nucleus (LGN) structures, though present in biological vision, may not be essential for motion direction detection. This insight provides a new direction for bio-inspired computational models. Future research will focus on hybridizing the HCdM with SOTA models that perform well on complex visual scenes to enhance its adaptability.

具有方向选择水平细胞的仿生学习树突运动检测框架。
运动方向检测是计算机视觉和神经科学的重要课题。受人类视觉系统生物学理论的启发,我们提出了一种基于水平细胞的可学习树突状神经元模型(HCdM),该模型可以高效捕获运动方向,同时保持高度鲁棒性。与目前依赖于扩展计算和提取全局特征的深度学习模型不同,HCdM模拟树突神经元的局部处理,实现高效的运动特征集成。通过突触学习来修剪不必要的部分,我们的模型在有噪声的图像中保持了很高的准确性,特别是在盐和胡椒噪声的情况下。实验结果表明,HCdM的测试准确率达到99.5%以上,在10%的椒盐噪声下保持了鲁棒性,在一定条件下实现了超过80%的跨数据集泛化。与视觉变压器(ViTs)和卷积神经网络(cnn)等最先进的(SOTA)模型进行比较,证明了HCdM的鲁棒性和效率。此外,与以前的人工视觉系统(AVSs)相比,我们的研究结果表明,外侧膝状核(LGN)结构虽然存在于生物视觉中,但可能不是运动方向检测所必需的。这一见解为生物启发的计算模型提供了一个新的方向。未来的研究重点是将HCdM与SOTA模型进行杂交,以增强其在复杂视觉场景下的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信