A Bio-Inspired Data-Driven Locomotion Optimization Framework for Adaptive Soft Inchworm Robots.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mahtab Behzadfar, Arsalan Karimpourfard, Yue Feng
{"title":"A Bio-Inspired Data-Driven Locomotion Optimization Framework for Adaptive Soft Inchworm Robots.","authors":"Mahtab Behzadfar, Arsalan Karimpourfard, Yue Feng","doi":"10.3390/biomimetics10050325","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves superior velocity prediction performance, with a coefficient of determination (R<sup>2</sup>) of 0.9362 and a root mean squared error (RMSE) of 0.3898, surpassing previously reported models, including linear regression, LASSO, decision trees, and random forests. Particle Swarm Optimization (PSO) is integrated to maximize locomotion efficiency by optimizing the velocity-to-pressure ratio and adaptively minimizing input pressure for target velocities across diverse terrains. Experimental results demonstrate that the framework achieves an average 9.88% reduction in required pressure for efficient movement and a 6.45% reduction for stable locomotion, with the neural network enabling robust adaptation to varying surfaces. This dual optimization strategy ensures both energy savings and adaptive performance, advancing the deployment of soft robots in diverse environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050325","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves superior velocity prediction performance, with a coefficient of determination (R2) of 0.9362 and a root mean squared error (RMSE) of 0.3898, surpassing previously reported models, including linear regression, LASSO, decision trees, and random forests. Particle Swarm Optimization (PSO) is integrated to maximize locomotion efficiency by optimizing the velocity-to-pressure ratio and adaptively minimizing input pressure for target velocities across diverse terrains. Experimental results demonstrate that the framework achieves an average 9.88% reduction in required pressure for efficient movement and a 6.45% reduction for stable locomotion, with the neural network enabling robust adaptation to varying surfaces. This dual optimization strategy ensures both energy savings and adaptive performance, advancing the deployment of soft robots in diverse environments.

自适应软尺蠖机器人仿生数据驱动运动优化框架。
提出了一种基于数据驱动的仿生软尺蠖机器人节能运动优化框架。利用前馈神经网络,该方法精确地模拟了驱动参数(压力、频率)和环境条件(表面摩擦)之间的非线性关系。神经网络在速度预测方面表现优异,其决定系数(R2)为0.9362,均方根误差(RMSE)为0.3898,优于以往报道的线性回归、LASSO、决策树、随机森林等模型。结合粒子群算法(PSO),通过优化速度压力比和自适应最小化目标速度在不同地形上的输入压力来最大化运动效率。实验结果表明,该框架实现了有效运动所需压力平均降低9.88%,稳定运动所需压力平均降低6.45%,神经网络能够对不同表面进行鲁棒适应。这种双重优化策略确保了节能和自适应性能,推进了软机器人在各种环境中的部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信