{"title":"Water Impact on Superhydrophobic Surface: One Hydrophilic Spot Morphing and Controlling Droplet Rebounce.","authors":"Jiali Guo, Haoran Zhao, Ching-Wen Lou, Ting Dong","doi":"10.3390/biomimetics10050319","DOIUrl":null,"url":null,"abstract":"<p><p>Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable ways. Herein, this work shows that well-designed surface chemistry can produce an accurate control of force transmission to impinging droplets, permitting precise controlled droplet rebounce. The non-wetting surfaces (superhydrophobic), which mimics the water-repellent mechanism of lotus leaves via micro-to-nanoscale hierarchical morphology, with patterned \"defect\" of extreme wettability (hydrophilic), are synthesized by photolithography using only one inexpensive fluorine-free reagent (methyltrichlorosilane). The contact line of impinging droplet during flatting and receding is free to move on the superhydrophobic region and pinned as it meets with the hydrophilic defect, which introduces a net surface tension force allowing patterned droplet deposition, controlled droplet splitting, and directed droplet rebound. The work also achieves controlled vertical rebound of impinging droplets on inclined surfaces by controlling defect's size, impact position, and impact velocity. This research demonstrates pinning forces as a general strategy to attain sophisticated droplet motions, which opens an avenue in future explorations, such as matter transportation, energy transformation, and object actuation.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable ways. Herein, this work shows that well-designed surface chemistry can produce an accurate control of force transmission to impinging droplets, permitting precise controlled droplet rebounce. The non-wetting surfaces (superhydrophobic), which mimics the water-repellent mechanism of lotus leaves via micro-to-nanoscale hierarchical morphology, with patterned "defect" of extreme wettability (hydrophilic), are synthesized by photolithography using only one inexpensive fluorine-free reagent (methyltrichlorosilane). The contact line of impinging droplet during flatting and receding is free to move on the superhydrophobic region and pinned as it meets with the hydrophilic defect, which introduces a net surface tension force allowing patterned droplet deposition, controlled droplet splitting, and directed droplet rebound. The work also achieves controlled vertical rebound of impinging droplets on inclined surfaces by controlling defect's size, impact position, and impact velocity. This research demonstrates pinning forces as a general strategy to attain sophisticated droplet motions, which opens an avenue in future explorations, such as matter transportation, energy transformation, and object actuation.