{"title":"Numerical Investigation on the Aerodynamic Benefits of Corrugated Wing in Dragonfly-like Hovering Flapping Wing.","authors":"Arun Raj Shanmugam, Chang Hyun Sohn, Ki Sun Park","doi":"10.3390/biomimetics10050256","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of corrugated wings on the aerodynamic characteristics of a dragonfly-like hovering flapping wing is investigated using two-dimensional numerical simulations. Two types of pitch motion profiles, namely 'sinusoidal' and 'trapezoidal', are employed. The results obtained from the corrugated wings at Reynolds number Re = 2150 are then compared with the flat plate geometries to analyze the aerodynamic benefits of wing corrugation. The aerodynamic characteristics of corrugated wings are investigated quantitatively using cycle-averaged vertical force coefficient. For the qualitative investigation, time histories of vertical force coefficient, vorticity, and surface pressure distribution are used. The results reveal that the corrugated wings perform better than the flat plates in all three flapping configurations for both sinusoidal and trapezoidal pitch profiles. For a tandem wing with a sinusoidal pitch profile, the corrugated wings yield a vertical force generation nearly 14%, 22%, and 12%, higher than the flat plate geometries for ψ = 0°, 90°, and 180°, respectively. The corrugated wing sheds a relatively stronger detached counter clockwise vortex (CCWV) on the lower surface as compared to the flat plate, and hence, the vertical force is much higher for the corrugated wing. For a tandem wing with a trapezoidal pitch profile, the corrugated wings yield a vertical force generation nearly 27%, 22%, and 57%, higher than the flat plate geometries for ψ = 0°, 90°, and 180°, respectively. In corrugated wing geometry, the delayed stall mechanism is slightly postponed due to the corrugation shape's ability to trap the vortex structures, leading to a positive effect on vertical force production.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050256","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of corrugated wings on the aerodynamic characteristics of a dragonfly-like hovering flapping wing is investigated using two-dimensional numerical simulations. Two types of pitch motion profiles, namely 'sinusoidal' and 'trapezoidal', are employed. The results obtained from the corrugated wings at Reynolds number Re = 2150 are then compared with the flat plate geometries to analyze the aerodynamic benefits of wing corrugation. The aerodynamic characteristics of corrugated wings are investigated quantitatively using cycle-averaged vertical force coefficient. For the qualitative investigation, time histories of vertical force coefficient, vorticity, and surface pressure distribution are used. The results reveal that the corrugated wings perform better than the flat plates in all three flapping configurations for both sinusoidal and trapezoidal pitch profiles. For a tandem wing with a sinusoidal pitch profile, the corrugated wings yield a vertical force generation nearly 14%, 22%, and 12%, higher than the flat plate geometries for ψ = 0°, 90°, and 180°, respectively. The corrugated wing sheds a relatively stronger detached counter clockwise vortex (CCWV) on the lower surface as compared to the flat plate, and hence, the vertical force is much higher for the corrugated wing. For a tandem wing with a trapezoidal pitch profile, the corrugated wings yield a vertical force generation nearly 27%, 22%, and 57%, higher than the flat plate geometries for ψ = 0°, 90°, and 180°, respectively. In corrugated wing geometry, the delayed stall mechanism is slightly postponed due to the corrugation shape's ability to trap the vortex structures, leading to a positive effect on vertical force production.