Improved Manta Ray Foraging Optimization for PID Control Parameter Tuning in Artillery Stabilization Systems.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiuye Wang, Xiang Li, Qinqin Sun, Chenjun Xia, Ye-Hwa Chen
{"title":"Improved Manta Ray Foraging Optimization for PID Control Parameter Tuning in Artillery Stabilization Systems.","authors":"Xiuye Wang, Xiang Li, Qinqin Sun, Chenjun Xia, Ye-Hwa Chen","doi":"10.3390/biomimetics10050266","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, an Improved Manta Ray Foraging Optimization (IMRFO) algorithm is proposed to address the challenge of parameter tuning in traditional PID controllers for artillery stabilization systems. The proposed algorithm introduces chaotic mapping to optimize the initial population, enhancing the global search capability; additionally, a sigmoid function and Lévy flight-based dynamic adjustment strategy regulate the selection factor and step size, improving both convergence speed and optimization accuracy. Comparative experiments using five benchmark test functions demonstrate that the IMRFO algorithm outperforms five commonly used heuristic algorithms in four cases. The proposed algorithm is validated through co-simulation and physical platform experiments. Experimental results show that the proposed approach significantly improves control accuracy and response speed, offering an effective solution for optimizing complex nonlinear control systems. By introducing heuristic optimization algorithms for self-tuning artillery stabilization system parameters, this work provides a new approach to enhancing the intelligence and adaptability of modern artillery control.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050266","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an Improved Manta Ray Foraging Optimization (IMRFO) algorithm is proposed to address the challenge of parameter tuning in traditional PID controllers for artillery stabilization systems. The proposed algorithm introduces chaotic mapping to optimize the initial population, enhancing the global search capability; additionally, a sigmoid function and Lévy flight-based dynamic adjustment strategy regulate the selection factor and step size, improving both convergence speed and optimization accuracy. Comparative experiments using five benchmark test functions demonstrate that the IMRFO algorithm outperforms five commonly used heuristic algorithms in four cases. The proposed algorithm is validated through co-simulation and physical platform experiments. Experimental results show that the proposed approach significantly improves control accuracy and response speed, offering an effective solution for optimizing complex nonlinear control systems. By introducing heuristic optimization algorithms for self-tuning artillery stabilization system parameters, this work provides a new approach to enhancing the intelligence and adaptability of modern artillery control.

基于改进蝠鲼觅食优化的火炮稳定系统PID控制参数整定。
针对火炮稳定系统中传统PID控制器存在的参数整定问题,提出了一种改进的蝠鲼觅食优化算法。该算法引入混沌映射对初始种群进行优化,增强了全局搜索能力;此外,利用sigmoid函数和基于lsamvy飞行的动态调整策略调节了选择因子和步长,提高了收敛速度和优化精度。使用5个基准测试函数的对比实验表明,在4种情况下,IMRFO算法优于5种常用的启发式算法。通过联合仿真和物理平台实验验证了该算法的有效性。实验结果表明,该方法显著提高了控制精度和响应速度,为复杂非线性控制系统的优化提供了有效的解决方案。通过引入自整定火炮稳定系统参数的启发式优化算法,为提高现代火炮控制的智能性和自适应性提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信