{"title":"Improved Anthropomorphic Robotic Hand for Architecture and Construction: Integrating Prestressed Mechanisms with Self-Healing Elastomers.","authors":"Mijin Kim, Rubaya Yaesmin, Hyungtak Seo, Hwang Yi","doi":"10.3390/biomimetics10050284","DOIUrl":null,"url":null,"abstract":"<p><p>Soft pneumatic robot-arm end-effectors can facilitate adaptive architectural fabrication and building construction. However, conventional pneumatic grippers often suffer from air leakage and tear, particularly under prolonged grasping and inflation-induced stress. To address these challenges, this study suggests an enhanced anthropomorphic gripper by integrating a pre-stressed reversible mechanism (PSRM) and a novel self-healing material (SHM) polyborosiloxane-Ecoflex™ hybrid polymer (PEHP) developed by the authors. The results demonstrate that PSRM finger grippers can hold various objects without external pressure input (12 mm displacement under a 1.2 N applied), and the SHM assists with recovery of mechanical properties upon external damage. The proposed robotic hand was evaluated through real-world construction tasks, including wall painting, floor plastering, and block stacking, showcasing its durability and functional performance. These findings contribute to promoting the cost-effective deployment of soft robotic hands in robotic construction.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft pneumatic robot-arm end-effectors can facilitate adaptive architectural fabrication and building construction. However, conventional pneumatic grippers often suffer from air leakage and tear, particularly under prolonged grasping and inflation-induced stress. To address these challenges, this study suggests an enhanced anthropomorphic gripper by integrating a pre-stressed reversible mechanism (PSRM) and a novel self-healing material (SHM) polyborosiloxane-Ecoflex™ hybrid polymer (PEHP) developed by the authors. The results demonstrate that PSRM finger grippers can hold various objects without external pressure input (12 mm displacement under a 1.2 N applied), and the SHM assists with recovery of mechanical properties upon external damage. The proposed robotic hand was evaluated through real-world construction tasks, including wall painting, floor plastering, and block stacking, showcasing its durability and functional performance. These findings contribute to promoting the cost-effective deployment of soft robotic hands in robotic construction.