Development of a Dragonfly-Inspired High Aerodynamic Force Flapping-Wing Mechanism Using Asymmetric Wing Flapping Motion.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jinze Liang, Mengzong Zheng, Tianyu Pan, Guanting Su, Yuanjun Deng, Mengda Cao, Qiushi Li
{"title":"Development of a Dragonfly-Inspired High Aerodynamic Force Flapping-Wing Mechanism Using Asymmetric Wing Flapping Motion.","authors":"Jinze Liang, Mengzong Zheng, Tianyu Pan, Guanting Su, Yuanjun Deng, Mengda Cao, Qiushi Li","doi":"10.3390/biomimetics10050309","DOIUrl":null,"url":null,"abstract":"<p><p>Bionic micro air vehicles are currently being popularized for military as well as civilian use and dragonflies display a wealth of skill in their remarkable flight capabilities. This study designs an asymmetric motion flapping-wing mechanism inspired by the dragonfly, using a single actuator to achieve the coupling of stroke and pitch motion. This study simulates the motion of the dragonfly's wings using the designed mechanism and experimentally validates the motion laws and aerodynamic characteristics of the mechanism. The analysis focuses on the asymmetry in the wing's stroke and pitch motion and their aerodynamic implications. The flapping-wing mechanism accurately replicates the wing motion of a real dragonfly in flight, and the maximum lift-to-weight ratio can reach up to 230.2%, demonstrating significant aerodynamic benefits. This mechanism provides valuable guidance for the structural design and kinematic control of future flapping-wing vehicles.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050309","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bionic micro air vehicles are currently being popularized for military as well as civilian use and dragonflies display a wealth of skill in their remarkable flight capabilities. This study designs an asymmetric motion flapping-wing mechanism inspired by the dragonfly, using a single actuator to achieve the coupling of stroke and pitch motion. This study simulates the motion of the dragonfly's wings using the designed mechanism and experimentally validates the motion laws and aerodynamic characteristics of the mechanism. The analysis focuses on the asymmetry in the wing's stroke and pitch motion and their aerodynamic implications. The flapping-wing mechanism accurately replicates the wing motion of a real dragonfly in flight, and the maximum lift-to-weight ratio can reach up to 230.2%, demonstrating significant aerodynamic benefits. This mechanism provides valuable guidance for the structural design and kinematic control of future flapping-wing vehicles.

基于非对称扑翼运动的蜻蜓型高气动力扑翼机构的研制。
仿生微型飞行器目前在军用和民用领域都得到了推广,蜻蜓在其非凡的飞行能力中展示了丰富的技能。本研究以蜻蜓为灵感,设计了一种非对称运动扑翼机构,利用单个驱动器实现了行程和俯仰运动的耦合。本研究利用所设计的机构对蜻蜓翅膀的运动进行了模拟,并对机构的运动规律和气动特性进行了实验验证。重点分析了机翼的冲程和俯仰运动的不对称性及其气动意义。扑翼机构精确地复制了真实蜻蜓在飞行中的翅膀运动,最大升重比可达230.2%,具有显著的气动效益。该机构对未来扑翼飞行器的结构设计和运动控制具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信