{"title":"DEM Study and Field Experiments on Coupling Bionic Subsoilers.","authors":"Zihe Xu, Hongyan Qi, Lidong Wang, Shuo Wang, Xuanting Liu, Yunhai Ma","doi":"10.3390/biomimetics10050306","DOIUrl":null,"url":null,"abstract":"<p><p>Subsoiling is an effective tillage method for breaking up the plough pan and reducing soil bulk density. However, subsoilers often encounter challenges such as high draft resistance and excessive energy consumption during operation. In this study, the claw toes of the badger and the scales of the pangolin were selected as bionic prototypes, based on which coupling bionic subsoilers were designed. The discrete element method (DEM) was used to simulate and analyze the interactions between soil and both the standard subsoiler and coupling bionic subsoilers. Field experiments were conducted to validate the simulation results. The simulation results showed that the coupling bionic subsoilers reduced the draft force by 7.70-16.02% compared to the standard subsoiler at different working speeds. Additionally, the soil disturbance coefficient of the coupling bionic subsoilers decreased by 5.91-13.57%, and the soil bulkiness was reduced by 2.84-18.41%. The field experiment results showed that coupling bionic subsoilers reduced the average draft force by 11.06% and decreased the soil disturbance area. The field experiments validated the accuracy of DEM simulation results. This study provides valuable insights for designing more efficient subsoilers.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050306","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Subsoiling is an effective tillage method for breaking up the plough pan and reducing soil bulk density. However, subsoilers often encounter challenges such as high draft resistance and excessive energy consumption during operation. In this study, the claw toes of the badger and the scales of the pangolin were selected as bionic prototypes, based on which coupling bionic subsoilers were designed. The discrete element method (DEM) was used to simulate and analyze the interactions between soil and both the standard subsoiler and coupling bionic subsoilers. Field experiments were conducted to validate the simulation results. The simulation results showed that the coupling bionic subsoilers reduced the draft force by 7.70-16.02% compared to the standard subsoiler at different working speeds. Additionally, the soil disturbance coefficient of the coupling bionic subsoilers decreased by 5.91-13.57%, and the soil bulkiness was reduced by 2.84-18.41%. The field experiment results showed that coupling bionic subsoilers reduced the average draft force by 11.06% and decreased the soil disturbance area. The field experiments validated the accuracy of DEM simulation results. This study provides valuable insights for designing more efficient subsoilers.