Transcriptomic Analysis of the m6A Reader YTHDF2 in the Maintenance and Differentiation of Human Embryonic Stem Cells.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-05-26 DOI:10.1093/stmcls/sxaf032
Boshi Feng, Yanxi Chen, Huanchang Tu, Jin Zhang, Lingling Tong, Xiaohan Lyu, Aaron Trent Irving, Di Chen
{"title":"Transcriptomic Analysis of the m6A Reader YTHDF2 in the Maintenance and Differentiation of Human Embryonic Stem Cells.","authors":"Boshi Feng, Yanxi Chen, Huanchang Tu, Jin Zhang, Lingling Tong, Xiaohan Lyu, Aaron Trent Irving, Di Chen","doi":"10.1093/stmcls/sxaf032","DOIUrl":null,"url":null,"abstract":"<p><p>As the most abundant internal modification on mRNAs, N6-methyladenosine (m6A) has been discovered to be involved in different biological processes. Mostly determined by m6A methyl-transferases (m6A writers) and demethylases (m6A erasers), different cell types possess differential m6A profiles of transcriptomes. However, the interpretation of the m6A-encoded epitranscriptomic information needs m6A readers to bind and recruit different machinery for regulating the target mRNAs, which in turn, may regulate cell fates. The functions of the m6A readers in the regulation of the maintenance and differentiation of human embryonic stem cells (hESCs) remain largely unknown. In this study, we deleted the whole genomic region of the m6A reader YTHDF2 and discovered that YTHDF2 is dispensable for the maintenance, but important for the differentiation of hESCs, especially for the differentiation towards ectoderm. Furthermore, we identified the m6A-modified ROBO1 mRNAs as potential targets by YTHDF2 in regulating hESC to neuroectoderm differentiation. This study reveals the potential roles of the m6A reader YTHDF2 in regulating the specification of neuroectodermal cell fate.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As the most abundant internal modification on mRNAs, N6-methyladenosine (m6A) has been discovered to be involved in different biological processes. Mostly determined by m6A methyl-transferases (m6A writers) and demethylases (m6A erasers), different cell types possess differential m6A profiles of transcriptomes. However, the interpretation of the m6A-encoded epitranscriptomic information needs m6A readers to bind and recruit different machinery for regulating the target mRNAs, which in turn, may regulate cell fates. The functions of the m6A readers in the regulation of the maintenance and differentiation of human embryonic stem cells (hESCs) remain largely unknown. In this study, we deleted the whole genomic region of the m6A reader YTHDF2 and discovered that YTHDF2 is dispensable for the maintenance, but important for the differentiation of hESCs, especially for the differentiation towards ectoderm. Furthermore, we identified the m6A-modified ROBO1 mRNAs as potential targets by YTHDF2 in regulating hESC to neuroectoderm differentiation. This study reveals the potential roles of the m6A reader YTHDF2 in regulating the specification of neuroectodermal cell fate.

m6A读取器YTHDF2在人胚胎干细胞维持和分化中的转录组学分析。
n6 -甲基腺苷(N6-methyladenosine, m6A)是mrna上最丰富的内部修饰物,已被发现参与不同的生物过程。主要由m6A甲基转移酶(m6A写入者)和去甲基化酶(m6A擦除者)决定,不同的细胞类型具有不同的m6A转录组谱。然而,m6A编码的表转录组信息的解释需要m6A读取器结合并招募不同的机制来调节目标mrna,这反过来可能调节细胞命运。m6A读卡器在人类胚胎干细胞(hESCs)维持和分化的调控中的功能在很大程度上仍然未知。在本研究中,我们删除了m6A读取器YTHDF2的整个基因组区域,发现YTHDF2对于hESCs的维持是必不可少的,但对于hESCs的分化,特别是向外胚层的分化是重要的。此外,我们发现m6a修饰的ROBO1 mrna是YTHDF2调控hESC向神经外胚层分化的潜在靶点。本研究揭示了m6A读取器YTHDF2在调节神经外胚层细胞命运规范中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信