Eukaryotic Centromere Remodeling: Plasticity, Dynamics, and Holocentromere Formation.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Dan Yang, Zhaoxin Xiao, Ke Li, Jiayi Hou, Fengfeng Zhang, Jianjun Qiao, Ning Li, Mingzhang Wen
{"title":"Eukaryotic Centromere Remodeling: Plasticity, Dynamics, and Holocentromere Formation.","authors":"Dan Yang, Zhaoxin Xiao, Ke Li, Jiayi Hou, Fengfeng Zhang, Jianjun Qiao, Ning Li, Mingzhang Wen","doi":"10.1111/pce.15652","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic centromeres highlight the remarkable plasticity of eukaryotic chromosomes through their conserved functionality and sequence divergence. Holocentric chromosomes, where centromere activity is distributed along the entire chromosome length, offer a unique model for investigating the molecular mechanisms underlying adaptive evolution between centromeres and chromosomes. In this review, we summarise and speculate on the multiple changes and prerequisites potentially involved in the evolution of holocentromeres. The interplay between environmental factors, chromosomal rearrangements, and centromere plasticity drives the transition from regional to holocentric characteristics. The centromeric histone H3 (CenH3) protein mediates neocentromere formation by recognising non-centromeric chromosomal regions with appropriate AT content, thereby facilitating chromosome restructuring in the transition from regional to holocentric chromosomes. Dynamic changes in repetitive sequences provide functional sites for centromere assembly, chromosomal recombination and repair and centromere spreading and maturation. Epigenetic modifications maintain functional coordination among multiple centromeric units by modulating chromatin states, CenH3 localisation, and kinetochore assembly. This review provides a comprehensive framework for understanding the evolutionary mechanisms of holocentromeres derived from monocentromere and offers insights into the design of artificial centromeres.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15652","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic centromeres highlight the remarkable plasticity of eukaryotic chromosomes through their conserved functionality and sequence divergence. Holocentric chromosomes, where centromere activity is distributed along the entire chromosome length, offer a unique model for investigating the molecular mechanisms underlying adaptive evolution between centromeres and chromosomes. In this review, we summarise and speculate on the multiple changes and prerequisites potentially involved in the evolution of holocentromeres. The interplay between environmental factors, chromosomal rearrangements, and centromere plasticity drives the transition from regional to holocentric characteristics. The centromeric histone H3 (CenH3) protein mediates neocentromere formation by recognising non-centromeric chromosomal regions with appropriate AT content, thereby facilitating chromosome restructuring in the transition from regional to holocentric chromosomes. Dynamic changes in repetitive sequences provide functional sites for centromere assembly, chromosomal recombination and repair and centromere spreading and maturation. Epigenetic modifications maintain functional coordination among multiple centromeric units by modulating chromatin states, CenH3 localisation, and kinetochore assembly. This review provides a comprehensive framework for understanding the evolutionary mechanisms of holocentromeres derived from monocentromere and offers insights into the design of artificial centromeres.

真核着丝粒重塑:可塑性、动力学和全新着丝粒形成。
真核着丝粒通过其保守的功能和序列分化突出了真核染色体的显著可塑性。着丝粒活动沿整个染色体长度分布的全新中心染色体为研究着丝粒和染色体之间适应进化的分子机制提供了一个独特的模型。在这篇综述中,我们总结和推测了多种变化和先决条件可能涉及到全新染色体的进化。环境因素、染色体重排和着丝粒可塑性之间的相互作用驱动着区域特征向全新中心特征的转变。着丝粒组蛋白H3 (CenH3)通过识别具有适当AT含量的非着丝粒染色体区域介导新着丝粒的形成,从而促进从区域染色体向全新着丝粒染色体过渡的染色体重组。重复序列的动态变化为着丝粒的组装、染色体重组和修复以及着丝粒的扩散和成熟提供了功能位点。表观遗传修饰通过调节染色质状态、CenH3定位和着丝粒组装来维持多个着丝粒单位之间的功能协调。这一综述为理解从单着丝粒演化而来的全新着丝粒的进化机制提供了一个全面的框架,并为人工着丝粒的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信