Mercapto-Functionalized Sacrificial Agents Enable Dual-Electrode Nano-Protection in MnO2||Zn batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-26 DOI:10.1002/cssc.202500680
Yuchao Chen, Fangfang Wu, Yulong Chen, Dongshu Liu, Junkang Zhang, Pu Wang, Yancong Feng, Wenxian Liu, Tianqi Deng, Wenhui Shi, Xiehong Cao
{"title":"Mercapto-Functionalized Sacrificial Agents Enable Dual-Electrode Nano-Protection in MnO2||Zn batteries.","authors":"Yuchao Chen, Fangfang Wu, Yulong Chen, Dongshu Liu, Junkang Zhang, Pu Wang, Yancong Feng, Wenxian Liu, Tianqi Deng, Wenhui Shi, Xiehong Cao","doi":"10.1002/cssc.202500680","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion batteries (AZIBs) offer significant promise for large-scale applications due to their low cost,high safety,and sustainability,prompting researchers to address the key issues of zinc dendrite formation,anode side reactions, and cathode dissolution.Despite most current research focusing on optimizing either the anode or the cathode, achieving coordinated improvements in both electrodes is crucial for fully realizing the potential of zinc-ion batteries (ZIBs), and remains a significant challenge due to the complexity involved in balancing the performance of both electrodes. Herein, we propose a sacrificial agent-promoted protective strategy that enhances the performance of both the anode and cathode simultaneously. Specifically, the mercapto-containing sacrificial agent adsorbs on the Zn anode, localizing electrons around the thiol group to trigger an in-situ transformation reaction. This reaction forms a modulation layer that optimizes Zn2+ deposition. Concurrently, the agent promotes the formation of a protective MnO2 nanoparticle shell to reduce cathode dissolution. This strategy significantly enhances the cycling stability of both the Zn||Zn and MnO2||Zn cells, achieving 4.5 and 3 times longer performance,respectively,compared to those in ZnSO4 electrolyte.This work presents a simple and efficient dual-function approach that simultaneously stabilizes the Zn anode and suppresses Mn-based cathode dissolution, offering a promising pathway for the practical development of AZIBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500680"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500680","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) offer significant promise for large-scale applications due to their low cost,high safety,and sustainability,prompting researchers to address the key issues of zinc dendrite formation,anode side reactions, and cathode dissolution.Despite most current research focusing on optimizing either the anode or the cathode, achieving coordinated improvements in both electrodes is crucial for fully realizing the potential of zinc-ion batteries (ZIBs), and remains a significant challenge due to the complexity involved in balancing the performance of both electrodes. Herein, we propose a sacrificial agent-promoted protective strategy that enhances the performance of both the anode and cathode simultaneously. Specifically, the mercapto-containing sacrificial agent adsorbs on the Zn anode, localizing electrons around the thiol group to trigger an in-situ transformation reaction. This reaction forms a modulation layer that optimizes Zn2+ deposition. Concurrently, the agent promotes the formation of a protective MnO2 nanoparticle shell to reduce cathode dissolution. This strategy significantly enhances the cycling stability of both the Zn||Zn and MnO2||Zn cells, achieving 4.5 and 3 times longer performance,respectively,compared to those in ZnSO4 electrolyte.This work presents a simple and efficient dual-function approach that simultaneously stabilizes the Zn anode and suppresses Mn-based cathode dissolution, offering a promising pathway for the practical development of AZIBs.

巯基功能化牺牲剂实现MnO2||锌电池的双电极纳米保护。
水性锌离子电池(AZIBs)由于其低成本、高安全性和可持续性,为大规模应用提供了巨大的希望,促使研究人员解决锌枝晶形成、阳极副反应和阴极溶解的关键问题。尽管目前大多数研究都集中在优化阳极或阴极,但实现两个电极的协调改进对于充分发挥锌离子电池(zib)的潜力至关重要,并且由于平衡两个电极的性能涉及的复杂性,仍然是一个重大挑战。在此,我们提出了一种牺牲剂促进的保护策略,同时提高阳极和阴极的性能。具体来说,含硫醇的牺牲剂吸附在Zn阳极上,将电子定位在巯基周围,从而引发原位转化反应。该反应形成了一个调制层,优化了Zn2+的沉积。同时,该剂促进保护性二氧化锰纳米粒子壳的形成,以减少阴极溶解。该策略显著提高了Zn||Zn和MnO2||Zn电池的循环稳定性,与在ZnSO4电解质中的电池相比,其性能分别提高了4.5倍和3倍。本工作提出了一种简单有效的双功能方法,同时稳定Zn阳极和抑制mn基阴极溶解,为azib的实际开发提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信