Dagwin Wachholz Junior , Rafael Gonçalves Pontes , Bruna M. Hryniewicz , Lauro Tatsuo Kubota
{"title":"Exploring a CRISPR/Cas12a-powered impedimetric biosensor for amplification-free detection of a pathogenic bacterial DNA","authors":"Dagwin Wachholz Junior , Rafael Gonçalves Pontes , Bruna M. Hryniewicz , Lauro Tatsuo Kubota","doi":"10.1016/j.bios.2025.117607","DOIUrl":null,"url":null,"abstract":"<div><div>Timely and precise detection of bacterial infections is essential for improving patient outcomes and reducing healthcare costs, especially for sepsis, where delayed diagnosis increases mortality. Traditional culture- and PCR-based methods are time consuming and require complex sample processing, making them unsuitable for rapid diagnostics in resource-limited settings. CRISPR/Cas-based methods, particularly when combined with electrochemical sensing, offer a promising alternative for rapid point-of-care (POC) diagnostics of bacterial infections due to their simplicity and specificity. This study proposes a label-free impedimetric biosensor using the CRISPR/Cas12a system for rapid and amplification-free detection of <em>Staphylococcus aureus</em> DNA, a primary pathogen responsible for sepsis. By leveraging CRISPR/Cas12a′s target-activated collateral cleavage on non-specific DNA reporters we investigated the impact of using a protospacer adjacent motif (PAM) sequence on detection sensitivity and specificity. Our biosensor demonstrated ultra-sensitive detection, with limit of detection as low as 20 aM for dsDNA targets in buffer and without any pre-amplification steps. The study also confirmed CRISPR specificity's dependence on the PAM sequence, showing that mismatches on targeting sequences reduces cleavage efficiency, with a drastic reduction in trans-cleavage activity for single mismatch in PAM-containing sequences. Additionally, we examined how the DNA reporter affects performance, noting reduced cleavage efficiency when a ssDNA target was paired with a dsDNA reporter. Furthermore, validation experiments using human serum samples confirmed the biosensor's accuracy for bacterial DNA detection in clinical settings. This work advances CRISPR-powered electrochemical biosensors, providing a detailed discussion on developing a highly sensitive, fast and amplification-free tool for early detection of sepsis-causing bacteria.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"285 ","pages":"Article 117607"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004816","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Timely and precise detection of bacterial infections is essential for improving patient outcomes and reducing healthcare costs, especially for sepsis, where delayed diagnosis increases mortality. Traditional culture- and PCR-based methods are time consuming and require complex sample processing, making them unsuitable for rapid diagnostics in resource-limited settings. CRISPR/Cas-based methods, particularly when combined with electrochemical sensing, offer a promising alternative for rapid point-of-care (POC) diagnostics of bacterial infections due to their simplicity and specificity. This study proposes a label-free impedimetric biosensor using the CRISPR/Cas12a system for rapid and amplification-free detection of Staphylococcus aureus DNA, a primary pathogen responsible for sepsis. By leveraging CRISPR/Cas12a′s target-activated collateral cleavage on non-specific DNA reporters we investigated the impact of using a protospacer adjacent motif (PAM) sequence on detection sensitivity and specificity. Our biosensor demonstrated ultra-sensitive detection, with limit of detection as low as 20 aM for dsDNA targets in buffer and without any pre-amplification steps. The study also confirmed CRISPR specificity's dependence on the PAM sequence, showing that mismatches on targeting sequences reduces cleavage efficiency, with a drastic reduction in trans-cleavage activity for single mismatch in PAM-containing sequences. Additionally, we examined how the DNA reporter affects performance, noting reduced cleavage efficiency when a ssDNA target was paired with a dsDNA reporter. Furthermore, validation experiments using human serum samples confirmed the biosensor's accuracy for bacterial DNA detection in clinical settings. This work advances CRISPR-powered electrochemical biosensors, providing a detailed discussion on developing a highly sensitive, fast and amplification-free tool for early detection of sepsis-causing bacteria.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.