Maksym Illienko, Komal Chaudhary, Matthias C Velsink, Stefan Witte
{"title":"Characterization of Sub-Optical-Wavelength Structures through Optically Opaque Films Using Picosecond Ultrasonics.","authors":"Maksym Illienko, Komal Chaudhary, Matthias C Velsink, Stefan Witte","doi":"10.1021/acs.nanolett.5c00800","DOIUrl":null,"url":null,"abstract":"<p><p>Periodic arrays of nanostructures form an important building block of modern integrated circuits and photonic devices. Functionality of such devices is often critically dependent on the detailed structure. Moreover, multistep lithographic processing requires accurate metrology tools to characterize device morphology noninvasively, often after the deposition of additional layers of material. Here we show that ultrafast picosecond ultrasonics enables the accurate characterization of periodic structures below optically opaque thin films. By optically generating and detecting ultrahigh-frequency ultrasound at the surface of the film, we quantitatively characterize the main features of subsurface gratings with line widths down to 100 nm. We find that the acoustic diffraction is sensitive to the shape of the grating lines on the scale of tens of nanometers.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"8909-8914"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00800","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodic arrays of nanostructures form an important building block of modern integrated circuits and photonic devices. Functionality of such devices is often critically dependent on the detailed structure. Moreover, multistep lithographic processing requires accurate metrology tools to characterize device morphology noninvasively, often after the deposition of additional layers of material. Here we show that ultrafast picosecond ultrasonics enables the accurate characterization of periodic structures below optically opaque thin films. By optically generating and detecting ultrahigh-frequency ultrasound at the surface of the film, we quantitatively characterize the main features of subsurface gratings with line widths down to 100 nm. We find that the acoustic diffraction is sensitive to the shape of the grating lines on the scale of tens of nanometers.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.