Lucas N. Trentin , Amadeus C. S. Alcântara , Carlos G. T. Batista , Munir S. Skaf
{"title":"Unraveling the Mechanical Behavior of Softwood Secondary Cell Walls through Atomistic Simulations","authors":"Lucas N. Trentin , Amadeus C. S. Alcântara , Carlos G. T. Batista , Munir S. Skaf","doi":"10.1021/acs.biomac.4c01806","DOIUrl":null,"url":null,"abstract":"<div><div>The plant cell wall (PCW) is a remarkable biomaterial, endowing plants with strength, stiffness, and defense against pathogens and chemical agents. This complex structure, mainly composed of cellulose in a matrix of hemicellulose, lignin, and water, exhibits impressive mechanical properties. However, the link between its molecular architecture and macroscopic mechanics is not fully understood. This study uses molecular dynamics simulations to examine the nanomechanical behavior of spruce wood’s S2 layer. Multicomponent models including cellulose, hemicellulose (xylan and mannan), lignin, and water were developed. Simulations showed that water acts as a “molecular lubricant”, mediating critical interactions between the components of the system. Tension and compression tests on the models displayed realistic mechanical behavior. Our results show that cellulose microfibrils bear the primary load, while lignin dissipates stress under compression. These findings offer new insights into the relationship between the molecular structure and mechanical function in this complex biomaterial.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (101KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3395-3409"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002429","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The plant cell wall (PCW) is a remarkable biomaterial, endowing plants with strength, stiffness, and defense against pathogens and chemical agents. This complex structure, mainly composed of cellulose in a matrix of hemicellulose, lignin, and water, exhibits impressive mechanical properties. However, the link between its molecular architecture and macroscopic mechanics is not fully understood. This study uses molecular dynamics simulations to examine the nanomechanical behavior of spruce wood’s S2 layer. Multicomponent models including cellulose, hemicellulose (xylan and mannan), lignin, and water were developed. Simulations showed that water acts as a “molecular lubricant”, mediating critical interactions between the components of the system. Tension and compression tests on the models displayed realistic mechanical behavior. Our results show that cellulose microfibrils bear the primary load, while lignin dissipates stress under compression. These findings offer new insights into the relationship between the molecular structure and mechanical function in this complex biomaterial.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.