Yuanyuan Fei, Jiayi Zhou, Junhe Zhang, Yao Yu, Changyin Sun
{"title":"Robust Finite-Time Trajectory Tracking Control for Quadrotor UAVs With Uncertainties, External Disturbances, and Input Saturation","authors":"Yuanyuan Fei, Jiayi Zhou, Junhe Zhang, Yao Yu, Changyin Sun","doi":"10.1049/cth2.70031","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the finite-time trajectory tracking control problem for quadrotor UAVs under model uncertainties, external disturbances, and input saturation. A robust finite-time trajectory tracking control scheme is proposed by following steps. First, a nominal controller is established based on integral terminal sliding mode control. Second, an auxiliary system is used to address the input saturation constraint problem. It effectively restricts inputs from exceeding the bounds. Third, a reinforcement learning component is designed to estimate and compensate for model uncertainties and external disturbances. Then, a robust finite-time scheme is constructed by integrating the nominal controller, the reinforcement learning compensating component, and the auxiliary system. Theoretical analysis verifies that the finite-time stability of controlled systems can be guaranteed by the proposed tracking control scheme, and the tracking error can be driven to a compact set in finite time. Furthermore, simulation results confirm the effectiveness of the proposed control scheme.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the finite-time trajectory tracking control problem for quadrotor UAVs under model uncertainties, external disturbances, and input saturation. A robust finite-time trajectory tracking control scheme is proposed by following steps. First, a nominal controller is established based on integral terminal sliding mode control. Second, an auxiliary system is used to address the input saturation constraint problem. It effectively restricts inputs from exceeding the bounds. Third, a reinforcement learning component is designed to estimate and compensate for model uncertainties and external disturbances. Then, a robust finite-time scheme is constructed by integrating the nominal controller, the reinforcement learning compensating component, and the auxiliary system. Theoretical analysis verifies that the finite-time stability of controlled systems can be guaranteed by the proposed tracking control scheme, and the tracking error can be driven to a compact set in finite time. Furthermore, simulation results confirm the effectiveness of the proposed control scheme.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.