{"title":"Stress-Dependent Wave Propagation in Fractured Rocks With Nonlinear Elastic and Hyperelastic Deformations","authors":"Li-Yun Fu, Haidi Yang, Bo-Ye Fu, Tobias M. Müller","doi":"10.1029/2024JB030889","DOIUrl":null,"url":null,"abstract":"<p>Stress-induced progressive deformations in fractured rocks with increasing differential stress generally undergo nonlinear elastic (due to crack closure), hyperelastic (due to stress accumulation), and inelastic (due to crack growth) deformations prior to mechanical failure. Wave propagation in such rocks involves the complex interaction of fracture- and stress-induced changes in both velocity and anisotropy. By focusing on nonlinear elastic and hyperelastic deformations, we incorporate acoustoelasticity into the traditional Hudson and Padé–Hudson models of penny-shaped ellipsoidal cracks to describe the coupling of fracture- and stress-induced anisotropies. The resulting acoustoelastic Hudson model (AHM) and Padé AHM can be used to describe the stress-dependent anisotropy of fractured rocks with varying crack densities. We integrate the dual-porosity model into the Padé AHM to account for the stress-induced closure of cracks with nonlinear elastic deformations. The plane-wave analyses and effective-moduli calculations of fractured rocks with varying crack densities and loading stresses determine the accuracy of these models under the isotropic (hydrostatic) and anisotropic (uniaxial and pure-shear) prestresses. The resulting Thomsen parameters are applied to experimental data to validate their applicability. Finite-difference simulations are implemented to differentiate the contribution of fracture- and stress-induced anisotropies through wavefront changes, depending on fracture orientation, crack density, prestress mode, and loading direction. Particular attention is paid to the anisotropic prestress perpendicular to the fracture strike, where the stress-induced crack closure reduces the fracture anisotropy so that the stress-induced anisotropy dominates the shape of wavefronts.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030889","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stress-induced progressive deformations in fractured rocks with increasing differential stress generally undergo nonlinear elastic (due to crack closure), hyperelastic (due to stress accumulation), and inelastic (due to crack growth) deformations prior to mechanical failure. Wave propagation in such rocks involves the complex interaction of fracture- and stress-induced changes in both velocity and anisotropy. By focusing on nonlinear elastic and hyperelastic deformations, we incorporate acoustoelasticity into the traditional Hudson and Padé–Hudson models of penny-shaped ellipsoidal cracks to describe the coupling of fracture- and stress-induced anisotropies. The resulting acoustoelastic Hudson model (AHM) and Padé AHM can be used to describe the stress-dependent anisotropy of fractured rocks with varying crack densities. We integrate the dual-porosity model into the Padé AHM to account for the stress-induced closure of cracks with nonlinear elastic deformations. The plane-wave analyses and effective-moduli calculations of fractured rocks with varying crack densities and loading stresses determine the accuracy of these models under the isotropic (hydrostatic) and anisotropic (uniaxial and pure-shear) prestresses. The resulting Thomsen parameters are applied to experimental data to validate their applicability. Finite-difference simulations are implemented to differentiate the contribution of fracture- and stress-induced anisotropies through wavefront changes, depending on fracture orientation, crack density, prestress mode, and loading direction. Particular attention is paid to the anisotropic prestress perpendicular to the fracture strike, where the stress-induced crack closure reduces the fracture anisotropy so that the stress-induced anisotropy dominates the shape of wavefronts.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.