Numerical Optimization of Fin Configurations for Increased Thermal Performance in Horizontal Latent Heat Thermal Storage Systems

Energy Storage Pub Date : 2025-05-27 DOI:10.1002/est2.70200
Naresh Kumar Goud Ranga, S. K. Gugulothu, P. Gandhi
{"title":"Numerical Optimization of Fin Configurations for Increased Thermal Performance in Horizontal Latent Heat Thermal Storage Systems","authors":"Naresh Kumar Goud Ranga,&nbsp;S. K. Gugulothu,&nbsp;P. Gandhi","doi":"10.1002/est2.70200","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study optimizes fin height and configuration angle in the lower section of a latent heat thermal storage (LHTS) system to enhance thermal performance. Using numerical simulations, the research explores the impact of placing fins exclusively below the horizontal axis, an area with minimal convection heat transfer. The study determines the optimal fin height and investigates four alternative fin configurations to identify the most efficient angle for heat storage. The numerical model is validated with a root mean square error (RMSE) of 2.3% and a melting time deviation of 4.7%. Results show that increasing the extended surface length from 10 to 30 mm reduces melting time by 35% due to enhanced heat conduction. Fin incorporation improves LHTS performance, cutting PCM melting time by at least 50%. Longer extended surfaces reduce temperature variation from 15°C to 6°C, ensuring better heat distribution. High-surface-area fin configurations increase thermal conductivity by 45%, reducing melting time by 28%. A fin angle of 45° accelerates melting by 22% compared with a vertical (90°) configuration due to enhanced convection. Optimizing the fin angle at 45° increases velocity magnitudes within the PCM by 35%, promoting uniform melting. Reducing the fin angle from 72° to 15° further decreases melting time from 75 to 45 min. Overall, optimizing fin configurations and integrating thermally enhanced PCMs significantly improve LHTS efficiency. The proposed design enhances thermal performance, accelerates phase transition, and ensures uniform temperature distribution, making it suitable for applications such as solar thermal energy storage.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study optimizes fin height and configuration angle in the lower section of a latent heat thermal storage (LHTS) system to enhance thermal performance. Using numerical simulations, the research explores the impact of placing fins exclusively below the horizontal axis, an area with minimal convection heat transfer. The study determines the optimal fin height and investigates four alternative fin configurations to identify the most efficient angle for heat storage. The numerical model is validated with a root mean square error (RMSE) of 2.3% and a melting time deviation of 4.7%. Results show that increasing the extended surface length from 10 to 30 mm reduces melting time by 35% due to enhanced heat conduction. Fin incorporation improves LHTS performance, cutting PCM melting time by at least 50%. Longer extended surfaces reduce temperature variation from 15°C to 6°C, ensuring better heat distribution. High-surface-area fin configurations increase thermal conductivity by 45%, reducing melting time by 28%. A fin angle of 45° accelerates melting by 22% compared with a vertical (90°) configuration due to enhanced convection. Optimizing the fin angle at 45° increases velocity magnitudes within the PCM by 35%, promoting uniform melting. Reducing the fin angle from 72° to 15° further decreases melting time from 75 to 45 min. Overall, optimizing fin configurations and integrating thermally enhanced PCMs significantly improve LHTS efficiency. The proposed design enhances thermal performance, accelerates phase transition, and ensures uniform temperature distribution, making it suitable for applications such as solar thermal energy storage.

提高水平潜热蓄热系统热性能的翅片结构的数值优化
为了提高潜热蓄热系统的热性能,本研究对潜热蓄热系统下部的翅片高度和构型角度进行了优化。通过数值模拟,该研究探讨了将翅片完全放置在水平轴下方的影响,这是一个对流传热最小的区域。该研究确定了最佳翅片高度,并研究了四种可选的翅片配置,以确定最有效的储热角度。数值模型的均方根误差(RMSE)为2.3%,熔化时间偏差为4.7%。结果表明,将延伸表面长度从10 mm增加到30 mm,由于热传导增强,熔化时间缩短了35%。翅片掺入提高了LHTS性能,将PCM熔化时间缩短了至少50%。较长的延伸表面将温度变化从15°C减少到6°C,确保更好的热量分配。高表面积翅片结构增加了45%的导热系数,减少了28%的熔化时间。由于对流增强,与垂直(90°)结构相比,45°的翅片角加速了22%的融化。优化45°的翅片角度可使PCM内的速度增加35%,促进均匀熔化。将翅片角度从72°减少到15°,进一步将熔化时间从75分钟减少到45分钟。总体而言,优化翅片结构和集成热增强型pcm可以显著提高LHTS效率。提出的设计提高了热性能,加速了相变,并确保了均匀的温度分布,使其适用于太阳能热能储存等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信