(111) Facet-engineered SnO2 as an electron transport layer for efficient and stable triple-cation perovskite solar cells†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Keshav Kumar Sharma, Rohit Saini, Sochannao Machinao and Ramesh Karuppannan
{"title":"(111) Facet-engineered SnO2 as an electron transport layer for efficient and stable triple-cation perovskite solar cells†","authors":"Keshav Kumar Sharma, Rohit Saini, Sochannao Machinao and Ramesh Karuppannan","doi":"10.1039/D5SE00339C","DOIUrl":null,"url":null,"abstract":"<p >In this study, we report (111) facet-engineered cubic phase tin(<small>IV</small>) oxide (C–SnO<small><sub>2</sub></small>) as a novel electron transport layer (ETL) for triple-cation mixed-halide Cs<small><sub>0.05</sub></small>(FA<small><sub>0.83</sub></small>MA<small><sub>0.17</sub></small>)<small><sub>0.95</sub></small>Pb(I<small><sub>0.83</sub></small>Br<small><sub>0.17</sub></small>)<small><sub>3</sub></small> perovskite solar cells (PSCs). The C–SnO<small><sub>2</sub></small> layer was prepared <em>via</em> a normal sol–gel process followed by the spin-coating technique. The (111) facet C–SnO<small><sub>2</sub></small> layer provides a larger surface contact area with an adjacent perovskite layer, enhancing charge transfer dynamics at the interface. In addition, the well-matched overlapping band structures improve the charge extraction efficiency between the two layers. Using (111) facet C–SnO<small><sub>2</sub></small> as an ETL, we obtain PSCs with a higher power conversion efficiency of 20.34% (0.09 cm<small><sup>2</sup></small>) than those employing a tetragonal phase SnO<small><sub>2</sub></small> ETL. The PSCs with the C–SnO<small><sub>2</sub></small> ETL retain over 81% of their initial efficiency after 480 h. This work concludes with a brief discussion on recombination and charge transport mechanisms, providing ways to optimize the C–SnO<small><sub>2</sub></small> ETL to improve the PSCs' performance and stability.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 11","pages":" 3102-3109"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00339c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we report (111) facet-engineered cubic phase tin(IV) oxide (C–SnO2) as a novel electron transport layer (ETL) for triple-cation mixed-halide Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskite solar cells (PSCs). The C–SnO2 layer was prepared via a normal sol–gel process followed by the spin-coating technique. The (111) facet C–SnO2 layer provides a larger surface contact area with an adjacent perovskite layer, enhancing charge transfer dynamics at the interface. In addition, the well-matched overlapping band structures improve the charge extraction efficiency between the two layers. Using (111) facet C–SnO2 as an ETL, we obtain PSCs with a higher power conversion efficiency of 20.34% (0.09 cm2) than those employing a tetragonal phase SnO2 ETL. The PSCs with the C–SnO2 ETL retain over 81% of their initial efficiency after 480 h. This work concludes with a brief discussion on recombination and charge transport mechanisms, providing ways to optimize the C–SnO2 ETL to improve the PSCs' performance and stability.

(11)表面工程SnO2作为高效稳定的三阳离子钙钛矿太阳能电池的电子传输层[j]
在这项研究中,我们报道(111)面工程立方相锡(IV)氧化物(C-SnO2)作为三阳离子混合卤化物Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3钙钛矿太阳能电池(PSCs)的新型电子传输层(ETL)。采用常规的溶胶-凝胶法制备了C-SnO2薄膜,然后采用旋涂技术制备了C-SnO2薄膜。(111)面C-SnO2层与相邻的钙钛矿层提供了更大的表面接触面积,增强了界面上的电荷传递动力学。此外,良好匹配的重叠带结构提高了两层之间的电荷提取效率。使用(111)面C-SnO2作为ETL,我们获得的psc的功率转换效率比使用四方相SnO2 ETL的psc高20.34% (0.09 cm2)。采用C-SnO2 ETL的PSCs在480 h后保持了超过81%的初始效率。本研究最后简要讨论了重组和电荷传输机制,提供了优化C-SnO2 ETL的方法,以提高PSCs的性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信