A three-component volume coordinate system generalized mixed element for piezoelectric composite structures

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zhicheng Yong, Yanhong Liu, Weiming Guo, Guanghui Qing
{"title":"A three-component volume coordinate system generalized mixed element for piezoelectric composite structures","authors":"Zhicheng Yong,&nbsp;Yanhong Liu,&nbsp;Weiming Guo,&nbsp;Guanghui Qing","doi":"10.1016/j.compstruct.2025.119318","DOIUrl":null,"url":null,"abstract":"<div><div>This paper combines the three-component volume coordinate system with the non-conforming generalized mixed element to develop an element for analyzing the static characteristics of piezoelectric composite structures. The element adopts volume coordinates as local coordinates, significantly alleviating the ill-conditioned relationship between local and Cartesian coordinates in traditional isoparametric elements under mesh distortion, thus reducing the sensitivity of the element to mesh distortion. Furthermore, the calculation of the Jacobian inverse matrix is avoided. On the other hand, this element retains the advantage of the mixed method that enables the concurrent consideration of displacement and stress boundary conditions, thereby facilitating an objective and rational description of the finite element model. Additionally, the discontinuity of in-plane stresses between layers is resolved by using a partial mixed method to separately solve the in-plane and out-of-plane stresses. Numerical examples demonstrate that the proposed element has excellent performance in the analysis of piezoelectric composite structures.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"368 ","pages":"Article 119318"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325004830","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper combines the three-component volume coordinate system with the non-conforming generalized mixed element to develop an element for analyzing the static characteristics of piezoelectric composite structures. The element adopts volume coordinates as local coordinates, significantly alleviating the ill-conditioned relationship between local and Cartesian coordinates in traditional isoparametric elements under mesh distortion, thus reducing the sensitivity of the element to mesh distortion. Furthermore, the calculation of the Jacobian inverse matrix is avoided. On the other hand, this element retains the advantage of the mixed method that enables the concurrent consideration of displacement and stress boundary conditions, thereby facilitating an objective and rational description of the finite element model. Additionally, the discontinuity of in-plane stresses between layers is resolved by using a partial mixed method to separately solve the in-plane and out-of-plane stresses. Numerical examples demonstrate that the proposed element has excellent performance in the analysis of piezoelectric composite structures.
压电复合材料结构的三分量体积坐标系广义混合元
本文将三分量体积坐标系与非协调广义混合单元相结合,建立了一种分析压电复合材料结构静力特性的单元。该单元采用体积坐标作为局部坐标,显著缓解了传统等参单元在网格畸变下局部坐标与笛卡尔坐标的病态关系,从而降低了单元对网格畸变的敏感性。进一步避免了雅可比矩阵逆矩阵的计算。另一方面,该单元保留了混合方法的优点,可以同时考虑位移和应力边界条件,从而便于对有限元模型进行客观合理的描述。此外,采用部分混合法分别求解层间面内应力和面外应力,解决了层间面内应力的不连续问题。数值算例表明,该单元在压电复合材料结构分析中具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信