Changbin Yan , Yuxuan Shi , Zihe Gao , Weiwei Zhan
{"title":"Extraction of image fractal characteristics of rock chips based on the Sandbox method and analysis of shield tunneling performance","authors":"Changbin Yan , Yuxuan Shi , Zihe Gao , Weiwei Zhan","doi":"10.1016/j.tust.2025.106751","DOIUrl":null,"url":null,"abstract":"<div><div>The size distribution of rock chips can fully reflect the performance of shield machine, and existing size distribution indicators suffer from low efficiency and poor accuracy. Therefore, the aim is to find an accurate and rapid quantitative indicator to characterize the rock chips size distribution and address the engineering issues of shield machine rock-breaking efficiency analysis and tunneling parameter optimization. In this study, five groups of rock chips with different quality components and eight shooting heights were designed to explore the performance and applicability of the image fractal dimension (<em>D</em>), a quantitative indicator of rock chip size distribution based on the Sandbox fractal method, and also to compare it with the traditional Box-counting method. Additionally, an analysis of 136 groups of rock chips data from different surrounding rock grades was conducted to investigate the correlation between image fractal dimension and common shield performance indexes, such as the average single cutter thrust force (<em>F</em><sub>n</sub>), and penetration depth (<em>P</em><sub>rev</sub>). The results indicate that the experimental platform constructed in this study, with image data acquired at a shooting height of 120 cm, is well-suited for calculating image fractal dimension. Compared to the traditional Box-counting method, the Sandbox method demonstrates higher sensitivity to changes in the particle size distribution of rock chips and does not impose restrictions on input image size, making it more appropriate for quantitative analysis. The image fractal dimension decreases as the proportion of large-sized rock chips increases. Under the same surrounding rock conditions, the image fractal dimension of rock chips is positively correlated with the logarithm of specific energy (<em>SE</em>) and negatively correlated with the logarithm of coarseness index (<em>CI</em>), effectively reflecting shield rock-breaking efficiency. Based on the correlation between image fractal dimension and <em>SE</em>, the optimal ranges of <em>F</em><sub>n</sub> and <em>S</em>/<em>P</em><sub>rev</sub> under grade II, III, IV, and V surrounding rock conditions can be determined, thereby enabling the optimization of tunneling performance.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"163 ","pages":"Article 106751"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088677982500389X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The size distribution of rock chips can fully reflect the performance of shield machine, and existing size distribution indicators suffer from low efficiency and poor accuracy. Therefore, the aim is to find an accurate and rapid quantitative indicator to characterize the rock chips size distribution and address the engineering issues of shield machine rock-breaking efficiency analysis and tunneling parameter optimization. In this study, five groups of rock chips with different quality components and eight shooting heights were designed to explore the performance and applicability of the image fractal dimension (D), a quantitative indicator of rock chip size distribution based on the Sandbox fractal method, and also to compare it with the traditional Box-counting method. Additionally, an analysis of 136 groups of rock chips data from different surrounding rock grades was conducted to investigate the correlation between image fractal dimension and common shield performance indexes, such as the average single cutter thrust force (Fn), and penetration depth (Prev). The results indicate that the experimental platform constructed in this study, with image data acquired at a shooting height of 120 cm, is well-suited for calculating image fractal dimension. Compared to the traditional Box-counting method, the Sandbox method demonstrates higher sensitivity to changes in the particle size distribution of rock chips and does not impose restrictions on input image size, making it more appropriate for quantitative analysis. The image fractal dimension decreases as the proportion of large-sized rock chips increases. Under the same surrounding rock conditions, the image fractal dimension of rock chips is positively correlated with the logarithm of specific energy (SE) and negatively correlated with the logarithm of coarseness index (CI), effectively reflecting shield rock-breaking efficiency. Based on the correlation between image fractal dimension and SE, the optimal ranges of Fn and S/Prev under grade II, III, IV, and V surrounding rock conditions can be determined, thereby enabling the optimization of tunneling performance.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.