Patrick Seiler , Bryan S. Kaplan , David C. Brice , Susu Duan , Lei Li , Maureen A. McGargill , Natalie Lee , Chun-Yang Lin , Rachael Keating , Elena A. Govorkova , Richard J. Webby
{"title":"Altered germinal center responses in mice vaccinated with highly pathogenic avian influenza A(H5N1) virus","authors":"Patrick Seiler , Bryan S. Kaplan , David C. Brice , Susu Duan , Lei Li , Maureen A. McGargill , Natalie Lee , Chun-Yang Lin , Rachael Keating , Elena A. Govorkova , Richard J. Webby","doi":"10.1016/j.vaccine.2025.127311","DOIUrl":null,"url":null,"abstract":"<div><div>Highly pathogenic avian influenza (HPAI) H5N1 virus vaccines typically yield lower neutralizing antibody titers in animals than influenza A virus (IAV) vaccines derived from other viral subtypes. To understand these differences, we compared the cellular immune responses in the draining lymph nodes (dLNs) of mice vaccinated with an inactivated whole H5N1 vaccine to those in mice vaccinated with seasonal H1N1pdm09, H7N9, or H9N2 IAV vaccines. H5N1-vaccinated mice exhibited reduced serum neutralizing antibody titers, despite the hemagglutinin-binding immunoglobulin production being similar to that with other IAV vaccines. Although bulk RNA sequencing showed no differences in B-cell populations after H5N1 and H1N1pdm09 vaccination, H5N1 vaccination resulted in fewer, but larger, dLN germinal centers and significantly more extrafollicular B cells, which are known to produce lower neutralizing antibody titers. Furthermore, H5N1-vaccinated mice had significantly more follicular helper and regulatory T cells. Therefore, differences in neutralizing antibody production in mice after IAV vaccination correlate with subtype-dependent germinal center reactions in the dLNs.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"60 ","pages":"Article 127311"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X25006085","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus vaccines typically yield lower neutralizing antibody titers in animals than influenza A virus (IAV) vaccines derived from other viral subtypes. To understand these differences, we compared the cellular immune responses in the draining lymph nodes (dLNs) of mice vaccinated with an inactivated whole H5N1 vaccine to those in mice vaccinated with seasonal H1N1pdm09, H7N9, or H9N2 IAV vaccines. H5N1-vaccinated mice exhibited reduced serum neutralizing antibody titers, despite the hemagglutinin-binding immunoglobulin production being similar to that with other IAV vaccines. Although bulk RNA sequencing showed no differences in B-cell populations after H5N1 and H1N1pdm09 vaccination, H5N1 vaccination resulted in fewer, but larger, dLN germinal centers and significantly more extrafollicular B cells, which are known to produce lower neutralizing antibody titers. Furthermore, H5N1-vaccinated mice had significantly more follicular helper and regulatory T cells. Therefore, differences in neutralizing antibody production in mice after IAV vaccination correlate with subtype-dependent germinal center reactions in the dLNs.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.