Redefining the lithium-sulphur battery performance with a lithium lanthanum titanate-graphene modified separator

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Krishnendu K Surendran, Sreekala Kunhi Kannan, Jithu Joseph, Mary Gladis Joseph
{"title":"Redefining the lithium-sulphur battery performance with a lithium lanthanum titanate-graphene modified separator","authors":"Krishnendu K Surendran,&nbsp;Sreekala Kunhi Kannan,&nbsp;Jithu Joseph,&nbsp;Mary Gladis Joseph","doi":"10.1016/j.mseb.2025.118451","DOIUrl":null,"url":null,"abstract":"<div><div>To suppress the lithium polysulfides (LPSs) dissolution and associated shuttle effect in Lithium-Sulfur Batteries (LSBs), we have functionalized the celgard separator with lithium lanthanum titanate-graphene nanoplatelets (LLTO-G), which offer LPSs immobilization capability and accelerated catalytic conversion kinetics. The LLTO-G composite was synthesized by solid-state route followed by ultrasonication. The assembled cell, optimized with an electrolyte-to-sulfur (E/S) ratio of 6–8 μL/mg demonstrated an initial discharge capacity of 1216 mAh/g at 0.1 C rate, retaining a capacity of 69 % after 100 cycles. Cyclability was investigated at a sulfur loading of 3 mg/cm<sup>2</sup> (0.5 C rate) over 200 cycles, resulting in an initial discharge capacity of 741 mAh/g. Furthermore, the device shows stable shuttle current, enhanced Li-ion diffusion, low coulombic efficiency loss, and minimal self-discharge. The electrochemical outcomes showcase the functionalized separator design as a viable strategy for developing high-performance LSBs.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"320 ","pages":"Article 118451"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004751","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To suppress the lithium polysulfides (LPSs) dissolution and associated shuttle effect in Lithium-Sulfur Batteries (LSBs), we have functionalized the celgard separator with lithium lanthanum titanate-graphene nanoplatelets (LLTO-G), which offer LPSs immobilization capability and accelerated catalytic conversion kinetics. The LLTO-G composite was synthesized by solid-state route followed by ultrasonication. The assembled cell, optimized with an electrolyte-to-sulfur (E/S) ratio of 6–8 μL/mg demonstrated an initial discharge capacity of 1216 mAh/g at 0.1 C rate, retaining a capacity of 69 % after 100 cycles. Cyclability was investigated at a sulfur loading of 3 mg/cm2 (0.5 C rate) over 200 cycles, resulting in an initial discharge capacity of 741 mAh/g. Furthermore, the device shows stable shuttle current, enhanced Li-ion diffusion, low coulombic efficiency loss, and minimal self-discharge. The electrochemical outcomes showcase the functionalized separator design as a viable strategy for developing high-performance LSBs.
用钛酸锂镧-石墨烯改性隔膜重新定义锂硫电池的性能
为了抑制锂硫电池(LSBs)中锂多硫化物(LPSs)的溶解和相关的穿梭效应,我们用钛酸锂镧-石墨烯纳米片(LLTO-G)功能化了celgard分离器,它具有固定LPSs的能力和加速催化转化动力学。采用固态法-超声法合成了LLTO-G复合材料。在电解硫比为6 ~ 8 μL/mg的条件下,电池在0.1℃条件下的初始放电容量为1216 mAh/g,循环100次后容量保持69%。在含硫量为3mg /cm2 (0.5 C)的条件下,研究了200次循环的可循环性,其初始放电容量为741 mAh/g。此外,该器件具有稳定的穿梭电流、增强的锂离子扩散、低库仑效率损失和最小的自放电等特点。电化学结果表明,功能化分离器设计是开发高性能lbs的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信