Controlled anchoring of PdPtAg nanodots on Au nanoplates: advancing quaternary metallic electrocatalysts for enhanced formic acid electro-oxidation through interface engineering

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoyu Sun , Yuanyuan Min , Yingying Wang , Yanyun Ma , Jiamei Song , Xiangdong Kong , Zhigang Geng , Yiqun Zheng
{"title":"Controlled anchoring of PdPtAg nanodots on Au nanoplates: advancing quaternary metallic electrocatalysts for enhanced formic acid electro-oxidation through interface engineering","authors":"Haoyu Sun ,&nbsp;Yuanyuan Min ,&nbsp;Yingying Wang ,&nbsp;Yanyun Ma ,&nbsp;Jiamei Song ,&nbsp;Xiangdong Kong ,&nbsp;Zhigang Geng ,&nbsp;Yiqun Zheng","doi":"10.1016/j.mseb.2025.118457","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a novel synthesis of Au-PdPtAg heterogeneous nanoplates (HNPs) with precisely engineered multimetallic interfaces, significantly enhancing formic acid electro-oxidation (FAOR). The Au-PdPtAg HNPs/C catalyst exhibits exceptional mass activity (1.9 times higher as that of Pt/C), accelerated kinetics, and long-term durability. <em>In situ<!--> </em>attenuated total reflectance infrared (ATR-IR) spectroscopy reveals<!--> <!-->unique<!--> <!-->CO adsorption behavior on Au-PdPtAg HNPs,<!--> <!-->with<!--> <!-->both bridged and atop species observed—a contrast to<!--> <!-->Pt/C, where only bridged adsorption occurs. DFT simulations show the d-band center of interfacial Pt atoms in PtPdAgAu(111) (−1.87 eV) shifts closer to the Fermi level compared to Pt(111) (−2.29 eV), lowering the energy barrier for FAOR intermediates. This work provides a practical route for designing multimetallic electrocatalysts with controlled architectures and highlights the role of interface engineering in advancing fuel cell technologies.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"320 ","pages":"Article 118457"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004817","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel synthesis of Au-PdPtAg heterogeneous nanoplates (HNPs) with precisely engineered multimetallic interfaces, significantly enhancing formic acid electro-oxidation (FAOR). The Au-PdPtAg HNPs/C catalyst exhibits exceptional mass activity (1.9 times higher as that of Pt/C), accelerated kinetics, and long-term durability. In situ attenuated total reflectance infrared (ATR-IR) spectroscopy reveals unique CO adsorption behavior on Au-PdPtAg HNPs, with both bridged and atop species observed—a contrast to Pt/C, where only bridged adsorption occurs. DFT simulations show the d-band center of interfacial Pt atoms in PtPdAgAu(111) (−1.87 eV) shifts closer to the Fermi level compared to Pt(111) (−2.29 eV), lowering the energy barrier for FAOR intermediates. This work provides a practical route for designing multimetallic electrocatalysts with controlled architectures and highlights the role of interface engineering in advancing fuel cell technologies.

Abstract Image

PdPtAg纳米点在Au纳米板上的控制锚定:通过界面工程推进季系金属电催化剂增强甲酸电氧化
我们介绍了一种具有精确设计的多金属界面的Au-PdPtAg非均相纳米板(HNPs)的新合成方法,该方法显著增强了甲酸电氧化(FAOR)。Au-PdPtAg HNPs/C催化剂表现出优异的质量活性(比Pt/C高1.9倍)、加速动力学和长期耐久性。原位衰减全反射红外(ATR-IR)光谱揭示了Au-PdPtAg HNPs上独特的CO吸附行为,桥接和顶部都有,与Pt/C相比,只有桥接吸附发生。DFT模拟表明,与Pt(111) (- 2.29 eV)相比,PtPdAgAu(111) (- 1.87 eV)中界面Pt原子的d波段中心更接近费米能级,降低了FAOR中间体的能垒。这项工作为设计具有可控结构的多金属电催化剂提供了一条实用途径,并突出了界面工程在推进燃料电池技术中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信