A new model for predicting characteristics of the near-field leakage in high-pressure CO2 pipelines

IF 4.8 Q2 ENERGY & FUELS
Yan Shang , Xiaoling Chen , Peilu Wu , Zhanjie Li , Ming Yang , Xiaokai Xing , Jian Jiao , Xinze Li
{"title":"A new model for predicting characteristics of the near-field leakage in high-pressure CO2 pipelines","authors":"Yan Shang ,&nbsp;Xiaoling Chen ,&nbsp;Peilu Wu ,&nbsp;Zhanjie Li ,&nbsp;Ming Yang ,&nbsp;Xiaokai Xing ,&nbsp;Jian Jiao ,&nbsp;Xinze Li","doi":"10.1016/j.jpse.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><div>The safe transportation of carbon dioxide (CO<sub>2</sub>) is crucial to the successful implementation of Carbon Capture, Utilization, and Storage (CCUS) projects. Accidental leaks in pipelines can pose significant risks to this process. Understanding the characteristics of near-field leakage is essential for accurately predicting CO<sub>2</sub> diffusion patterns and conducting effective risk assessments. This paper presents a compressible multiphase flow model based on non-equilibrium phase transitions. Utilizing this model, the characteristics of under-expanded jets resulting from high-pressure CO<sub>2</sub> pipeline leakage are investigated in this study. The shock wave structures of the Mach disk and jet boundary layer are examined. Furthermore, the effects of various initial pressures, initial temperatures and leakage sizes on the pressure, fluid velocity, temperature, and Mach number in the near field are analyzed. Lastly, the paper proposes predictive formulas for the position, diameter, and boundary layer thickness of the Mach disk based on simulation results. A comparison of the predicted values with experimental data shows that these formulas can accurately predict the characteristic dimensions of the normal shock wave, with a maximum error rate of 5.5%.</div></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"5 2","pages":"Article 100249"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143324000763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The safe transportation of carbon dioxide (CO2) is crucial to the successful implementation of Carbon Capture, Utilization, and Storage (CCUS) projects. Accidental leaks in pipelines can pose significant risks to this process. Understanding the characteristics of near-field leakage is essential for accurately predicting CO2 diffusion patterns and conducting effective risk assessments. This paper presents a compressible multiphase flow model based on non-equilibrium phase transitions. Utilizing this model, the characteristics of under-expanded jets resulting from high-pressure CO2 pipeline leakage are investigated in this study. The shock wave structures of the Mach disk and jet boundary layer are examined. Furthermore, the effects of various initial pressures, initial temperatures and leakage sizes on the pressure, fluid velocity, temperature, and Mach number in the near field are analyzed. Lastly, the paper proposes predictive formulas for the position, diameter, and boundary layer thickness of the Mach disk based on simulation results. A comparison of the predicted values with experimental data shows that these formulas can accurately predict the characteristic dimensions of the normal shock wave, with a maximum error rate of 5.5%.

Abstract Image

高压CO2管道近场泄漏特性预测新模型
二氧化碳的安全运输是成功实施碳捕集、利用和封存(CCUS)项目的关键。管道中的意外泄漏可能对这一过程构成重大风险。了解近场泄漏的特征对于准确预测CO2扩散模式和进行有效的风险评估至关重要。提出了一种基于非平衡相变的可压缩多相流模型。利用该模型对高压CO2管道泄漏引起的欠膨胀射流特性进行了研究。研究了马赫盘和射流边界层的激波结构。分析了不同初始压力、初始温度和泄漏尺寸对近场压力、流体速度、温度和马赫数的影响。最后,根据仿真结果提出了马赫盘位置、直径和边界层厚度的预测公式。预测值与实验数据的比较表明,这些公式能够准确地预测正常激波的特征尺寸,最大错误率为5.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信