Vincent Motto-Ros , Frederic Pelascini , Marcella Dell'Aglio , Alessandro De Giacomo
{"title":"Fate of laser-induced plasma material: Particle formation and re-deposition effects in micro-LIBS scanning applications","authors":"Vincent Motto-Ros , Frederic Pelascini , Marcella Dell'Aglio , Alessandro De Giacomo","doi":"10.1016/j.sab.2025.107240","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to investigate the fate of ablated material during LIBS imaging and assess the potential impact of re-deposited material on the sample's elemental quantification. A standard brass alloy (80/20 % Cu/Zn) embedded in pure epoxy resin was used as the sample for this study. The particles produced during the LIBS imaging experiment were collected over a large area, spanning several millimeters, and analyzed using High-Resolution Optical Microscopy and Scanning Electron Microscopy. Time-resolved Laser-Induced Plasma images were utilized to interpret the particles distribution, revealing two distinct groups —nanoparticles and microparticles—after plasma extinction. Based on these observations, the effects of plasma condensation, plasma charging, and shockwave transport on the ablated material are discussed. Finally, the impact of re-deposited particles on elemental analysis during LIBS imaging is critically examined.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"230 ","pages":"Article 107240"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725001259","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to investigate the fate of ablated material during LIBS imaging and assess the potential impact of re-deposited material on the sample's elemental quantification. A standard brass alloy (80/20 % Cu/Zn) embedded in pure epoxy resin was used as the sample for this study. The particles produced during the LIBS imaging experiment were collected over a large area, spanning several millimeters, and analyzed using High-Resolution Optical Microscopy and Scanning Electron Microscopy. Time-resolved Laser-Induced Plasma images were utilized to interpret the particles distribution, revealing two distinct groups —nanoparticles and microparticles—after plasma extinction. Based on these observations, the effects of plasma condensation, plasma charging, and shockwave transport on the ablated material are discussed. Finally, the impact of re-deposited particles on elemental analysis during LIBS imaging is critically examined.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.