Kejia Chen , Jiawen Zhang , Xuanming Liu , Zunlei Feng , Xiaohu Yang
{"title":"πFL: Private, atomic, incentive mechanism for federated learning based on blockchain","authors":"Kejia Chen , Jiawen Zhang , Xuanming Liu , Zunlei Feng , Xiaohu Yang","doi":"10.1016/j.bcra.2024.100271","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning (FL) is predicated on the provision of high-quality data by multiple clients, which is then used to train global models. A plethora of incentive mechanism studies have been conducted with the objective of promoting the provision of high-quality data by clients. These studies have focused on the distribution of benefits to clients. However, the incentives of federated learning are transactional in nature, and the issue of the atomicity of transactions has not been addressed. Furthermore, the data quality of individual clients participating in training varies, and they may participate negatively in training out of privacy leakage concerns.</div><div>Consequently, we propose an inaugural atomistic incentive scheme with privacy preservation in the FL setting: <em>π</em>FL (<strong>p</strong>rivacy, <strong>a</strong>tomic, <strong>i</strong>ncentive). This scheme establishes a more dependable training environment based on Shapley valuation, secure multi-party computation, and smart contracts. Consequently, it ensures that each client's contribution can be accurately measured and appropriately rewarded, improves the accuracy and efficiency of model training, and enhances the sustainability and reliability of the FL system. The efficacy of this mechanism has been demonstrated through comprehensive experimental analysis. It is evident that this mechanism not only protects the privacy of trainers and provides atomic training rewards but also improves the model performance of FL, with an accuracy improvement of at least 8%.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100271"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000848","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) is predicated on the provision of high-quality data by multiple clients, which is then used to train global models. A plethora of incentive mechanism studies have been conducted with the objective of promoting the provision of high-quality data by clients. These studies have focused on the distribution of benefits to clients. However, the incentives of federated learning are transactional in nature, and the issue of the atomicity of transactions has not been addressed. Furthermore, the data quality of individual clients participating in training varies, and they may participate negatively in training out of privacy leakage concerns.
Consequently, we propose an inaugural atomistic incentive scheme with privacy preservation in the FL setting: πFL (privacy, atomic, incentive). This scheme establishes a more dependable training environment based on Shapley valuation, secure multi-party computation, and smart contracts. Consequently, it ensures that each client's contribution can be accurately measured and appropriately rewarded, improves the accuracy and efficiency of model training, and enhances the sustainability and reliability of the FL system. The efficacy of this mechanism has been demonstrated through comprehensive experimental analysis. It is evident that this mechanism not only protects the privacy of trainers and provides atomic training rewards but also improves the model performance of FL, with an accuracy improvement of at least 8%.
期刊介绍:
Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.