{"title":"Implications of size-dependent predation of protists and nematodes on the composition and functionality of the prokaryotic soil microbiome","authors":"Haotian Wang , Stefan Geisen , Christoph C. Tebbe","doi":"10.1016/j.apsoil.2025.106201","DOIUrl":null,"url":null,"abstract":"<div><div>Protists and nematodes are dominant predators of prokaryotic communities in soil. Their strong difference in size suggests different feeding strategies and preferences. Here we analyzed the relevance of size-dependent predation by distinguishing in microcosm experiments the contribution of small-sized and large-sized protists and nematodes, respectively. Sterilized soils were inoculated with soil suspensions filtrated across 250 μm, 100 μm, 60 μm, 20 μm and 5 μm pore sized membranes and a non-filtrated control. After 60 days of incubation, only the soils inoculated with the 5 μm-filtrate showed lower abundances of bacteria, archaea and fungi, and a differently composed protistan community. The nematode communities were always dominated by the small-sized bacterivore genus <em>Acrobeloides</em>. Correlation analyses indicated that small-sized protists were associated with a wider range of prokaryotic taxa than larger sized protists. In contrast to small-sized nematodes, large-sized showed no correlation with specific prokaryotic taxa. The comparison of effects on prokaryotes at DNA and RNA levels suggested a preference of the soil predators for actively growing rather than resting cells. Small-sized protists (only Cercozoa) and nematodes had a more pronounced influence on the gene abundances of microbial groups and N cycling genetic potentials, i.e., bacterial <em>amoA</em>, <em>nirS</em>, and <em>nosZ</em>II genes. Therefore, we conclude that the common ecological size-dependent predation theory also applies to trophic interactions of protists and nematodes with soil prokaryotes. The distinct feeding preferences can alter the prevalence of different N-functional genes, which could thus potentially modify the dynamics of the N cycling in soil.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"212 ","pages":"Article 106201"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325003397","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Protists and nematodes are dominant predators of prokaryotic communities in soil. Their strong difference in size suggests different feeding strategies and preferences. Here we analyzed the relevance of size-dependent predation by distinguishing in microcosm experiments the contribution of small-sized and large-sized protists and nematodes, respectively. Sterilized soils were inoculated with soil suspensions filtrated across 250 μm, 100 μm, 60 μm, 20 μm and 5 μm pore sized membranes and a non-filtrated control. After 60 days of incubation, only the soils inoculated with the 5 μm-filtrate showed lower abundances of bacteria, archaea and fungi, and a differently composed protistan community. The nematode communities were always dominated by the small-sized bacterivore genus Acrobeloides. Correlation analyses indicated that small-sized protists were associated with a wider range of prokaryotic taxa than larger sized protists. In contrast to small-sized nematodes, large-sized showed no correlation with specific prokaryotic taxa. The comparison of effects on prokaryotes at DNA and RNA levels suggested a preference of the soil predators for actively growing rather than resting cells. Small-sized protists (only Cercozoa) and nematodes had a more pronounced influence on the gene abundances of microbial groups and N cycling genetic potentials, i.e., bacterial amoA, nirS, and nosZII genes. Therefore, we conclude that the common ecological size-dependent predation theory also applies to trophic interactions of protists and nematodes with soil prokaryotes. The distinct feeding preferences can alter the prevalence of different N-functional genes, which could thus potentially modify the dynamics of the N cycling in soil.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.