Concavity and perturbed concavity for p-Laplace equations

IF 2.3 2区 数学 Q1 MATHEMATICS
Marco Gallo, Marco Squassina
{"title":"Concavity and perturbed concavity for p-Laplace equations","authors":"Marco Gallo,&nbsp;Marco Squassina","doi":"10.1016/j.jde.2025.113452","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study convexity properties for quasilinear Lane-Emden-Fowler equations of the type<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mspace></mspace><mtext> in Ω</mtext><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn></mtd><mtd><mspace></mspace><mtext> in Ω</mtext><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mspace></mspace><mtext> on ∂Ω</mtext><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> when <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a convex domain. In particular, in the subhomogeneous case <span><math><mi>q</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, the solution <em>u</em> inherits concavity properties from <em>a</em> whenever assumed, while it is proved to be concave up to an error if <em>a</em> is near to a constant. More general problems are also taken into account, including a wider class of nonlinearities. These results generalize some contained in <span><span>[91]</span></span> and <span><span>[120]</span></span>.</div><div>Additionally, some results for the singular case <span><math><mi>q</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> and the superhomogeneous case <span><math><mi>q</mi><mo>&gt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>≈</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> are obtained. Some properties for the <em>p</em>-fractional Laplacian <span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mi>s</mi><mo>≈</mo><mn>1</mn></math></span>, are shown as well.</div><div>We highlight that some results are new even in the semilinear framework <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>; in some of these cases, we deduce also uniqueness (and nondegeneracy) of the critical point of <em>u</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113452"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004796","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study convexity properties for quasilinear Lane-Emden-Fowler equations of the type{Δpu=a(x)uq in Ω,u>0 in Ω,u=0 on ∂Ω, when ΩRN is a convex domain. In particular, in the subhomogeneous case q[0,p1], the solution u inherits concavity properties from a whenever assumed, while it is proved to be concave up to an error if a is near to a constant. More general problems are also taken into account, including a wider class of nonlinearities. These results generalize some contained in [91] and [120].
Additionally, some results for the singular case q[1,0) and the superhomogeneous case q>p1, qp1 are obtained. Some properties for the p-fractional Laplacian (Δ)ps, s(0,1), s1, are shown as well.
We highlight that some results are new even in the semilinear framework p=2; in some of these cases, we deduce also uniqueness (and nondegeneracy) of the critical point of u.
p-拉普拉斯方程的凹性和微扰凹性
本文研究了拟线性Lane-Emden-Fowler方程的凸性,该类方程在Ω中为{−Δpu=a(x)uq,在Ω中为u>;0,在∂Ω中为u=0,当Ω∧RN是凸域时。特别地,在次齐次情况下q∈[0,p−1],解u继承了a的凹性,而当a接近一个常数时,解u被证明是凹到一个误差。更一般的问题也被考虑,包括更广泛的非线性问题。这些结果推广了[91]和[120]中包含的一些结果。此外,还得到了奇异情况q∈[−1,0]和超齐次情况q>;p−1,q≈p−1的一些结果。给出了分数阶拉普拉斯算子(−Δ)ps, s∈(0,1),s≈1的一些性质。我们强调,即使在半线性框架p=2中,一些结果也是新的;在某些情况下,我们还推导出u的临界点的唯一性(和非简并性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信