Giant Nonvolatile Multistate Resistance with Fully Magnetically Controlled van der Waals Multiferroic Tunnel Junctions

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhi Yan*, Xujin Zhang, Jianhua Xiao, Cheng Fang and Xiaohong Xu*, 
{"title":"Giant Nonvolatile Multistate Resistance with Fully Magnetically Controlled van der Waals Multiferroic Tunnel Junctions","authors":"Zhi Yan*,&nbsp;Xujin Zhang,&nbsp;Jianhua Xiao,&nbsp;Cheng Fang and Xiaohong Xu*,&nbsp;","doi":"10.1021/acs.nanolett.5c0044010.1021/acs.nanolett.5c00440","DOIUrl":null,"url":null,"abstract":"<p >Ferroelectric polarization switching in electrically controlled van der Waals multiferroic tunnel junctions (vdW-MFTJs) causes atomic migration, compromising device stability and fatigue resistance. Here, we propose fully magnetically controlled vdW-MFTJs based on a CrBr<sub>3</sub>/MnPSe<sub>3</sub>/CrBr<sub>3</sub> vertical heterostructure, achieving ferroelectric polarization reversal without atomic migration. First-principles calculations reveal that integrating PtTe<sub>2</sub>/alkali-metal (Li/Na/K)-doped/intercalated CrBr<sub>3</sub> electrodes enables exceptional performance, with a maximum tunneling magnetoresistance (TMR) of 8.1 × 10<sup>5</sup>% and tunneling electroresistance (TER) of 2499%. Applying an external bias voltage enhances the TMR to 3.6 × 10<sup>7</sup>% and the TER to 9990%. A pronounced negative differential resistance (NDR) effect is observed with a record peak-to-valley ratio (PVR) of 9.55 × 10<sup>9</sup>% for vertical tunnel junctions. The spin-filtering channels are flexibly controlled by the magnetization direction of the magnetic free layer, achieving perfect spin-filtering over a broad bias range. This work paves the way for the experimental exploration of fully magnetically controlled vdW-MFTJs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 21","pages":"8473–8479 8473–8479"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00440","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric polarization switching in electrically controlled van der Waals multiferroic tunnel junctions (vdW-MFTJs) causes atomic migration, compromising device stability and fatigue resistance. Here, we propose fully magnetically controlled vdW-MFTJs based on a CrBr3/MnPSe3/CrBr3 vertical heterostructure, achieving ferroelectric polarization reversal without atomic migration. First-principles calculations reveal that integrating PtTe2/alkali-metal (Li/Na/K)-doped/intercalated CrBr3 electrodes enables exceptional performance, with a maximum tunneling magnetoresistance (TMR) of 8.1 × 105% and tunneling electroresistance (TER) of 2499%. Applying an external bias voltage enhances the TMR to 3.6 × 107% and the TER to 9990%. A pronounced negative differential resistance (NDR) effect is observed with a record peak-to-valley ratio (PVR) of 9.55 × 109% for vertical tunnel junctions. The spin-filtering channels are flexibly controlled by the magnetization direction of the magnetic free layer, achieving perfect spin-filtering over a broad bias range. This work paves the way for the experimental exploration of fully magnetically controlled vdW-MFTJs.

Abstract Image

具有完全磁控范德华多铁隧道结的巨非易失多态电阻
在电控范德华多铁隧道结(vdW-MFTJs)中,铁电极化开关会导致原子迁移,影响器件的稳定性和抗疲劳性。在这里,我们提出了基于CrBr3/MnPSe3/CrBr3垂直异质结构的全磁控vdW-MFTJs,实现了铁电极化反转而没有原子迁移。第一性原理计算表明,集成PtTe2/碱金属(Li/Na/K)掺杂/嵌入的CrBr3电极具有优异的性能,最大隧道磁电阻(TMR)为8.1 × 105%,隧道电电阻(TER)为2499%。施加外部偏置电压将TMR提高到3.6 × 107%, TER提高到9990%。垂直隧道结的负差分电阻(NDR)效应显著,峰谷比(PVR)达到创纪录的9.55 × 109%。自旋滤波通道可通过磁性自由层的磁化方向灵活控制,在宽偏置范围内实现完美的自旋滤波。这项工作为全磁控vdw - mftj的实验探索铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信