“Button-on-a-String” Mechanism in Water, the Ultrafast UV-to-Heat Conversion by Mycosporine-like Amino Acid Porphyra-334 of Natural Sunscreen Compound

IF 3.7 Q2 CHEMISTRY, PHYSICAL
Makoto Hatakeyama*,  and , Shinichiro Nakamura, 
{"title":"“Button-on-a-String” Mechanism in Water, the Ultrafast UV-to-Heat Conversion by Mycosporine-like Amino Acid Porphyra-334 of Natural Sunscreen Compound","authors":"Makoto Hatakeyama*,&nbsp; and ,&nbsp;Shinichiro Nakamura,&nbsp;","doi":"10.1021/acsphyschemau.4c0010710.1021/acsphyschemau.4c00107","DOIUrl":null,"url":null,"abstract":"<p >Mycosporine-like amino acids (MAAs) are a family of hydrophilic sunscreen compounds synthesized by aquatic organisms, such as algae and cyanobacteria. In this study, we demonstrate that porphyra-334, which is a common MAA, decays nonradiatively within several hundred femtoseconds after ultraviolet (UV) light absorption in water by rotating the intramolecular cyclohexenimine ring. The ring rotation resulted from the UV excitation of the intramolecular π-conjugation, and the ring rotation proceeded while preserving the hydrogen bonds with the surrounding water molecules. The hydrogen bonds were preserved due to the structural flexibility of the ring-attached amino acids of porphyra-334. The amino acids maintained their center of mass positions during the ring-rotating nonradiative decay. The amino acids and cyclohexenimine ring are analogous to the string and button of a button-on-a-string spinner, otherwise known as button whirligigs. Thus, we refer to the ring-rotating nonradiative decay of porphyra-334 as a button-on-a-string mechanism. We also show that this mechanism results from porphyra-334 itself rather than from the surrounding water molecules. The present results indicate that the molecular “spinner” exists in aquatic organisms and protects them from UV with the aid of water.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 3","pages":"274–282 274–282"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mycosporine-like amino acids (MAAs) are a family of hydrophilic sunscreen compounds synthesized by aquatic organisms, such as algae and cyanobacteria. In this study, we demonstrate that porphyra-334, which is a common MAA, decays nonradiatively within several hundred femtoseconds after ultraviolet (UV) light absorption in water by rotating the intramolecular cyclohexenimine ring. The ring rotation resulted from the UV excitation of the intramolecular π-conjugation, and the ring rotation proceeded while preserving the hydrogen bonds with the surrounding water molecules. The hydrogen bonds were preserved due to the structural flexibility of the ring-attached amino acids of porphyra-334. The amino acids maintained their center of mass positions during the ring-rotating nonradiative decay. The amino acids and cyclohexenimine ring are analogous to the string and button of a button-on-a-string spinner, otherwise known as button whirligigs. Thus, we refer to the ring-rotating nonradiative decay of porphyra-334 as a button-on-a-string mechanism. We also show that this mechanism results from porphyra-334 itself rather than from the surrounding water molecules. The present results indicate that the molecular “spinner” exists in aquatic organisms and protects them from UV with the aid of water.

天然防晒化合物类真菌菌素类氨基酸卟啉-334在水中的超快uv -热转化机理
类真菌菌素氨基酸(Mycosporine-like amino acids, MAAs)是一类由藻类和蓝藻等水生生物合成的亲水防晒化合物。在这项研究中,我们证明了卟啉-334是一种常见的MAA,在水中通过旋转分子内环己亚胺环在紫外线(UV)吸收后的几百飞秒内发生非辐射衰变。环的旋转是由紫外激发分子内π共轭引起的,环的旋转是在保持与周围水分子氢键的情况下进行的。由于卟啉-334环上氨基酸的结构柔韧性,氢键得以保留。在环旋转非辐射衰变过程中,氨基酸保持了质心位置。氨基酸和环己亚胺环类似于键对键旋转器的弦和按钮,也被称为按钮旋转器。因此,我们将卟啉-334的环旋转非辐射衰变称为键对弦机制。我们还表明,这种机制是由卟啉-334本身而不是由周围的水分子引起的。目前的研究结果表明,分子“旋转体”存在于水生生物体内,并在水的帮助下保护它们免受紫外线的伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信